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Summary (150 words) 25 

High throughput single-cell RNA sequencing (sc-RNAseq) has become a frequently 26 

used tool to assess immune cell function and heterogeneity. Recently, the combined 27 

measurement of RNA and protein expression by sequencing was developed, which is 28 

commonly known as CITE-Seq. Acquisition of protein expression data along with 29 

transcriptome data resolves some of the limitations inherent to only assessing 30 

transcript, but also nearly doubles the sequencing read depth required per single cell. 31 

Furthermore, there is still a paucity of analysis tools to visualize combined transcript-32 

protein datasets.  33 

Here, we describe a novel targeted transcriptomics approach that combines analysis 34 

of over 400 genes with simultaneous measurement of over 40 proteins on more than 35 

25,000 cells. This targeted approach requires only about 1/10 of the read depth 36 

compared to a whole transcriptome approach while retaining high sensitivity for low 37 

abundance transcripts. To analyze these multi-omic transcript-protein datasets, we 38 

adapted One-SENSE for intuitive visualization of the relationship of proteins and 39 

transcripts on a single-cell level.  40 

  41 
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Introduction 42 

While pioneering work almost 20 years ago illustrated the ability to study the 43 

transcriptome at the single-cell level (Chiang and Melton, 2003; Phillips and Eberwine, 44 

1996), recent advances in microfluidics and reagents allow the high-throughput 45 

analysis of transcripts of 104 single cells in one experiment (Jaitin et al., 2014; Klein et 46 

al., 2015; Macosko et al., 2015). Although several methods have been developed for 47 

this purpose, currently the most widely adopted platform is a droplet-based 48 

microfluidic system commercialized by 10x Genomics (Zheng et al., 2017).  49 

Though analysis of transcript expression on the single cell level is a powerful tool to 50 

characterize the relationship and functional properties of cells, it is imperative to 51 

consider the relationship between transcript and protein when trying to extrapolate 52 

biology. Typically, transcripts are expressed at a much lower level than proteins – for 53 

example, murine liver cells have a median copy number of 43,100 protein molecules 54 

but only 3.7 RNA molecules per gene (Azimifar et al., 2014). Similarly, the dynamic 55 

range of expression is much greater for proteins with copy numbers spanning about 6-56 

7 orders of magnitude while transcript copy numbers span about 2 orders of 57 

magnitude (Schwanhausser et al., 2011). Finally, the correlation of gene expression and 58 

protein expression has been estimated to have a Pearson correlation coefficient 59 

between 0.4 (Schwanhausser et al., 2011) and 0.6 (Azimifar et al., 2014). These 60 

discrepancies in transcript and protein expression patterns are relevant for the 61 

biological interpretation of single cell transcriptome data, but also pose analytical 62 

challenges. Suitable approaches are required to visualize the data despite the 63 

pronounced differences in abundance and dynamic range of expression.  64 
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The parallel measurement of transcript and protein phenotype by sequencing has been 65 

recently reported as cellular indexing of transcriptomes and epitopes (CITE-seq) 66 

(Stoeckius et al., 2017) or RNA expression and protein sequencing (REAP-seq) 67 

(Peterson et al., 2017). These technologies leverage existing sc-RNAseq platforms that 68 

use an unbiased whole transcriptome (WTA) detection approach capturing cellular 69 

mRNA via its poly-A tail, and utilize oligonucleotide-labelled antibodies (carrying unique 70 

barcodes and also a poly-A tail) to interrogate surface protein abundance. Typically, 71 

current droplet-based WTA approaches result in the detection of ~1000 unique 72 

transcripts per single cell for the transcriptome (with a substantial fraction of these 73 

transcripts encoding ribosomal proteins), while antibody panels of up to 80 targets 74 

have been reported (Peterson et al., 2017). 75 

Though proof-of-principle for this technology has been established, it remains unclear 76 

how the sequencing-based antibody detection compares to established flow 77 

cytometry-based assays in different experimental settings with regards to capturing the 78 

dynamic range of protein expression and identifying low abundance protein 79 

expression. In addition, the combined WTA plus protein approach can quickly become 80 

resource intensive. Finally, droplet-based WTA pipelines may still miss specific 81 

transcripts of interest if they are below the limit of detection, with current high 82 

throughput chemistries capturing an estimated 10% of the total cellular mRNA (Zheng 83 

et al., 2017). 84 

Here, we report using a high throughput (>104 single cells) targeted transcriptomic 85 

approach employing nanowells to capture single cells (Rhapsody platform, 86 

commercialized by BD Biosciences) (Fan et al., 2015) in combination with 87 
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oligonucleotide-barcoded antibodies (termed AbSeq). Specifically, we simultaneously 88 

interrogated over 400 immune-related genes and 41 surface proteins that are 89 

commonly used for immunophenotyping. We found that this targeted approach was 90 

efficient at detecting low-abundance transcripts while only requiring about 1/10 of the 91 

sequencing read depth needed for WTA, indicating that targeted transcriptomics is a 92 

sensitive and cost-efficient alternative when the focus is on interrogating defined 93 

transcripts. Of note, this approach clearly separated different memory T cell subsets as 94 

well as regulatory T cells (Tregs) solely based on transcript information, which is often 95 

difficult due to the low amount of RNA recovered from T lymphocytes (Zheng et al., 96 

2017). Furthermore, we used 30-parameter fluorescent-based flow cytometry to 97 

measure the same proteins targets as in the multi-omic assay. Our data indicate that 98 

the validation of oligonucleotide-barcoded antibody panels is necessary for meaningful 99 

interpretation of the multi-omic data.   100 

To demonstrate the sensitivity and robustness of the system we analyzed T and NK 101 

cells before and after one hour of stimulation, revealing an unexpected disconnect in 102 

transcript and surface expression levels of the commonly used early activation marker 103 

CD69. Analysis of chemokine expression showed distinct phenotypes within the CD8+ 104 

T cell population as early as 60 minutes after stimulation, suggesting significant 105 

heterogeneity within this compartment. 106 

Finally, to visualize protein and transcriptome data in an intuitive single plot, we 107 

adapted One-SENSE, which was originally developed for visualization of mass 108 

cytometry data (Cheng et al., 2016). This adaptation allows for effective visualization 109 

and identification of cellular phenotypes that differ either by transcript or by protein. 110 
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Overall, we provide a methodological toolset for generating high throughput multi-omic 111 

single cell data with a focus on maximizing target transcript sensitivity at minimal read 112 

depth and an analytical tool to visualize these protein and transcript datasets. 113 

 114 

  115 
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Results 116 

Comparison of oligonucleotide-labelled antibody probes to high-dimensional flow 117 

cytometry 118 

For our reference data set we obtained peripheral blood mononuclear cells (PBMCs) 119 

from three healthy control subjects carrying the HLA-A*02:01 allele, which allowed 120 

isolation of EBV-specific CD8+ T cells using an EBV-Tetramer reagent (Dunne et al., 121 

2002). To ensure sufficient cell numbers of these rare, antigen-specific T cells, we 122 

enriched tetramer-positive T cells by fluorescence-activated cell sorting (FACS). In 123 

parallel, we sorted CD45+ live leukocytes from PBMCs (Figure 1A). Moreover, to 124 

minimize batch effects during subsequent staining with 41 oligo-nucleotide labelled 125 

antibodies (Figure 1B), we utilized a multiplexing protocol using barcoded cell-hashing 126 

antibodies (Stoeckius et al., 2018). All samples were processed simultaneously using 127 

the Rhapsody platform, a nano-well based cartridge system (Fan et al., 2015) for 128 

single-cell RNA sequencing with a targeted approach focusing on 490 immune-129 

relevant transcripts (all targets are listed in Suppl Table 1). Following quality control 130 

and removal of multiplets, we recovered 27,258 cells from the sequencing data, which 131 

were evenly distributed across the three different donors. 132 

First, we wanted to assess whether the surface protein phenotypes as defined by 133 

sequencing match known biology. For this, we designed two optimized 30-parameter 134 

immunophenotyping panels (adapted from (Mair and Prlic, 2018)) covering the same 41 135 

protein targets in an overlapping fashion. We used these panels to stain whole 136 

unsorted PBMC samples from the same 3 donors, down-sampled the cytometry data 137 

to 27,000 cells and used biaxial gating to identify the main immune lineages of the 138 
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myeloid compartment (Figure 1C) as well as the lymphoid compartment (Figure 1D). All 139 

populations were present at comparable frequencies in the two different data sets 140 

(Figure 1E and Figure 1F), with myeloid cells showing slightly lower abundance due to 141 

the sorting procedure required to enrich EBV-Tetramer+ cells as well as CD45+ live 142 

cells. Of note, even low-abundance cell populations such as CD1c+ conventional 143 

dendritic cells (cDCs) and crosspresenting CD141+ cDCs were clearly identified by their 144 

surface protein phenotype. Furthermore, the oligonucleotide-labelled antibodies 145 

allowed to discriminate the CD45 splice variants CD45RO and CD45RA, which cannot 146 

be distinguished by 3’ transcriptomic analysis alone.  147 

However, for the anti-TCRgd reagent we used, discordant patterns were observed 148 

when comparing the expression within CD3+ T cells to conventional flow cytometry 149 

(Supplementary Figure 1A). This was not immediately evident when visualizing the data 150 

on a heatmap (Supplementary Figure 1B), emphasizing the need for careful reagent 151 

validation for sequencing-based protein measurements. Thus, we did not analyze gd T 152 

cells separately for the rest of our study. Furthermore, the CCR7 reagent delivered sub-153 

optimal but usable resolution (data not shown). 154 

 155 

Targeted transcriptomics faithfully captures cellular heterogeneity similar to whole 156 

transcriptome approaches at lower read depths 157 

Next, we wanted to assess how well a targeted transcriptomics approach can identify 158 

immune cell heterogeneity compared to a commonly used whole transcriptome (WTA) 159 

pipeline. For this, we used a single donor and compared the resulting populations after 160 

graph-based-clustering of the transcript data using the R package Seurat 161 
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implementation of PhenoGraph at standard resolution settings (Butler et al., 2018; 162 

Levine et al., 2015) (Figure 2A and Suppl. Figure 2A and 2B). For visualization, we used 163 

uniform manifold approximation and projection (UMAP), a dimensionality reduction 164 

approach that has recently been adopted for single-cell data (Becht et al., 2018; 165 

McInnes et al., 2018). Overall, the targeted transcriptomic approach utilizing 490 genes 166 

revealed similar or even improved resolution of known immune subsets in the 167 

peripheral blood. In particular, CD4+ T cells and CD8+ T cells separated well, and we 168 

observed regulatory T cells (Tregs) expressing FOXP3 and CTLA4 as a separate cluster 169 

(Figure 2B). For verification of this Treg cluster, we utilized the corresponding protein 170 

signature, which showed high expression of CD25, and low expression of CD127 171 

(Figure 2C). Next, we compared the gene expression for four phenotypically similar 172 

clusters in the WTA and the targeted transcriptomics data set, showing very similar 173 

patterns for the top differentially expressed genes (Suppl. Figure 2B). To obtain a 174 

relative measure of detection efficiency, we calculated the average number of 175 

transcripts per cell both for the targeted transcriptomics as well as the WTA data set 176 

from the same donor. Around 75% of the assayed genes showed equal or slightly 177 

superior detection efficiencies (Figure 2D), suggesting that targeted transcriptomics 178 

can deliver valuable information at relatively low sequencing cost (i.e. approximately 179 

2500 reads/cell). 180 

Finally, to directly assess the effect of different read-depths on resolution of protein 181 

and transcript signals, we analyzed a different donor to a total of approximately 27,000 182 

reads/cell (approximately 18,000 reads/cell for the antibody library, 9,000 reads/cell for 183 

the transcript library) and subsampled the number of reads used during processing of 184 
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the raw data to 20% (approximately 4000 reads/cell for antibody library, 2000 185 

reads/cell for transcript library) and 10%. Visualization of the resulting clusters on a 186 

UMAP plot as well as the top-differentially expressed genes on a heatmap revealed no 187 

major differences between using 100% or 20% of the reads (Supplementary Figure 188 

2C). For the protein signal, the same was observed, while using only 10% of the reads 189 

resulted in noticeable loss of signal intensities (Supplementary Figure 2D). Overall, we 190 

conclude that using at least 2000 reads/cell for the transcript portion of the library and 191 

at least 200 reads/antibody/cell for the antibody portion of the antibody library delivers 192 

sufficient resolution. 193 

 194 

Multi-omic analysis identifies canonical memory T cell populations and allows the study 195 

of rare-antigen specific CD8+ T cells 196 

To test the value of multi-omic single cell analysis on a specific subset of the immune 197 

compartment, we performed an in-depth analysis of the CD8+ T cell compartment. 198 

First, we visualized protein and RNA data collected from total CD45+ live cells from 199 

PBMCs from three patents on separate UMAP plots (Fig 1A). We found that cells from 200 

different donors comingled and separated by cell type rather than by donor, 201 

suggesting that batch effect across donors was minimal (Figure 3A). Of note, protein 202 

information overlayed on the transcript-generated UMAP plot allowed accurate 203 

identification of all main immune clusters (Figure 3B), which is not necessarily the case 204 

when using transcript information for the corresponding lineage markers. This is 205 

exemplified by biaxial plots showing protein signal on the y-axis and transcript signal 206 

on the x-axis (Figure 3C): While for CD8A, transcript and protein are co-expressed in 207 
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most cells, only half of the CD4-protein+  (throughout the manuscript abbreviated as 208 

CD4-P) cells contained detectable CD4-transcript. In turn, there were other molecules 209 

of interest where the inverse was observed: CD69-RNA (plotted on the x-axis) was 210 

detected across a large number of T cells, but as expected only few T cells in the 211 

peripheral blood express CD69 protein (CD69-P, plotted on y-axis) on their surface. 212 

For CD27, we observed a higher correlation between transcript and protein (Figure 3C). 213 

Overall, these observations emphasize the importance of parallel measurement of 214 

protein and transcript to faithfully study T cell biology. 215 

Next, we continued our analysis of CD3+CD4-CD8+ T cells as defined by surface protein 216 

expression using SCAMP (Selected Clustering Annotated using Modes of Projections) 217 

(Greene et al., 2018). Unbiased graph-based clustering using transcript information 218 

suggested the presence of 5 distinct cellular clusters (Figure 3D). Visualization of the 219 

top differentially expressed genes such as SELL (encoding CD62L), CCR7 and GZMB 220 

suggested that these 5 clusters reflect canonical naïve and memory T cell populations 221 

(Sallusto et al., 1999) (Figure 3E). Additionally, our data allowed identification of CD8+ 222 

mucosal associated invariant T (MAIT) cells, which express high levels of IL18RAP and 223 

TNF (Slichter et al., 2016) (Mori et al., 2016). We confirmed the resemblance of these 224 

populations by surface protein expression (Figure 3F), with central memory CD8+ T 225 

cells expressing low levels of CD45RA-protein, and high CD27- and CD28-protein 226 

(Sallusto et al., 2004) (Hamann et al., 1997). Of note, the splice variants CD45RO and 227 

CD45RA cannot be distinguished by analyzing transcript alone, highlighting the added 228 

value of combined protein and transcript analysis. 229 
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To visualize the correspondence between transcript and protein expression in the 230 

multi-omic data set, we adopted One-SENSE, which has originally been developed for 231 

biologically meaningful visualization of mass cytometry data (Cheng et al., 2016). For 232 

this, we mapped cells separately by proteins and transcripts each on to a single UMAP 233 

dimension, similar to a recently published 1D t-stochastic neighbor embedding (t-SNE) 234 

representation for sc-RNA sequencing data (Linderman et al., 2019). The combined 235 

plot shows the overall distribution of protein expression profiles in the x-axis and the 236 

top-differentially expressed gene profiles on the y-axis. Aligned heatmaps that 237 

represent median expression with bins of cells are provided to annotate the one-238 

dimensional UMAP protein and gene expression profiles. This approach allows easy 239 

identification of cellular clusters that are similar by transcript, but separated by protein, 240 

and vice versa (Figure 3G). One example for this is highlighted in Figure 3G (red box 241 

and arrow), where cluster 2 (light green, containing TEMRA cells) is relatively 242 

homogenous by transcript, but can be separated by CD56 protein expression, 243 

probably marking some NKT cells. In turn, a fraction of cells between cluster 1 (dark 244 

blue, effector memory CD8+ T cells) and 2 (green, TEMRA) shares the same protein 245 

signature, but can be distinguished by GNLY and GZMH expression (Fig. 3G, red box 246 

and arrows). Varying degrees of concordance and ability to discriminate cellular 247 

subsets from gene and protein expression profiles can be seen across this plot. 248 

To determine if targeted transcriptomics is amenable for studying rare antigen-specific 249 

T cell populations, we analyzed CD8+ T cells recognizing an EBV-epitope (Dunne et al., 250 

2002). Visualization on the UMAP plot revealed remarkable similarity of EBV-specific T 251 

cells across all three donors (Figure 3H). As expected, most of the cells grouped within 252 
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the effector memory CD8+ T cell cluster. However, relative to the EBV-nonspecific 253 

memory T cell cluster the EBV-Tet+ T cells showed a significant downregulation of the 254 

effector molecule Granulysin, and an upregulation of YBX3, an RNA binding protein 255 

whose function has not been defined in T cells, but has recently been shown to be a 256 

critical regulator for the stability of specific mRNAs (Cooke et al., 2019). 257 

Overall, this data show that combining targeted transcriptomics and protein 258 

phenotyping by sequencing is a valuable approach for studying T cell subsets and 259 

could be used a resource-efficient tool for studying T cell responses in human disease. 260 

 261 

Short-term stimulation of T and NK cells reveals chemokine heterogeneity and a 262 

disconnect with the early activation marker CD69 263 

Cytokines and chemokines are the quintessential effector molecules of T cells, and the 264 

existence of specific T cell subsets that are poised for the production of certain 265 

cytokines has been the subject of intense research over the past decade (van den 266 

Broek et al., 2018; Zhou et al., 2009). To test whether multi-omic single-cell analysis 267 

can provide additional insight, we purified pan T cells together with NK cells and 268 

stimulated them for one hour with Phorbol-Myristate-Acetate (PMA) and Ionomycin. 269 

We probed early transcriptional changes with a T cell centric targeted transcriptomic 270 

approach covering 259 genes. Transcripts encoding for IFNG, FASL and ICOS 271 

exhibited robust upregulation in the stimulated versus unstimulated sample (Figure 4A), 272 

as was the case for CD69, a commonly utilized protein marker for early T cell activation 273 

(Figure 4B). Of note, when we analyzed cytokine expression relative to the surface 274 

protein expression of CD69, we observed that both IFNg as well as TNF transcript was 275 
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primarily expressed in CD69-transcript positive, but CD69-protein negative cells, 276 

suggesting that during very early stages of activation, CD69 protein might not be an 277 

ideal marker for T cell activation. However, FOSB, part of the transcription factor AP-1, 278 

was co-expressed with CD69-protein (Figure 4B), suggesting a close relationship of 279 

FOSB and CD69 expression. 280 

We focused our further analysis on CD8+ T cells only, though our data set also contains 281 

information on NK cells. Projection on a UMAP plot showed 8 discernable clusters that 282 

were selected manually. Protein expression patterns for CD45RA and CD45RO 283 

highlight the naïve and the memory T cells within this plot (Figure 4C). A heatmap 284 

visualization of the most highly expressed transcripts show that these clusters are 285 

defined by differential expression of CCL3, CCL4, IFNG, TNF, and various granzymes 286 

(Figure 4D). Overall, this analysis reveals considerable functional diversity within the 287 

CD8+ T cell compartment that is detectable as early as one hour after stimulation. 288 

 289 

Multi-omic analysis of the peripheral myeloid compartment reveals inflammatory 290 

subsets not captured by surface protein phenotype 291 

Next, we wanted to assess whether the targeted transcriptomics approach can also be 292 

used for other immune populations that are not as well studied as T cells. During the 293 

past decade it has become evident that the myeloid cell compartment is complex in 294 

terms of cellular heterogeneity (Guilliams et al., 2014; See et al., 2017; Villani et al., 295 

2017), and that commonly used bone-marrow derived differentiation protocols do not 296 

faithfully capture the phenotype of myeloid cells in vivo (Guilliams and Malissen, 2016; 297 

Helft et al., 2015). Thus, we tested how well targeted transcriptomics could dissect the 298 
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heterogeneity of the peripheral myeloid compartment. Unbiased clustering using 299 

transcript suggested the presence of 5 different populations (Figure 5A), with clear 300 

separation for CD14 and CD16 protein expression (Figure 5B). As expected, 301 

visualization of the top differentially expressed genes (Figure 5C) as well as key surface 302 

proteins (Figure 5D) mapped these clusters to CD123+ plasmacytoid dendritic cells 303 

(pDCs), CD1c+ conventional DCs (cDC2s), CD16+ monocytes and CD14+ monocytes. 304 

We used One-SENSE to further explore the relationship between cluster 0 and 1, 305 

revealing that these two populations were very similar in terms of surface protein 306 

profile (CD14+CD16-), but separated by a specific set of transcripts encoding for pro-307 

inflammatory cytokines and chemokines (Figure 5E). We confirmed that these 308 

transcripts were part of differentially expressed genes as identified by MAST (Finak et 309 

al., 2015), with higher expression in cluster 1 of CXCL3 and CCL4 (also known as MIP-310 

1b, a chemoattractant for natural killer cells) (Figure 5E). Thus, combining protein and 311 

transcriptome data allowed us to observe multiple functional subsets within the 312 

peripheral CD14+ myeloid population which were not apparent by surface marker 313 

expression alone. In summary, this data highlights that targeted transcriptomics can be 314 

used for exploratory studies of different immune compartments. 315 

 316 

  317 
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Discussion 318 

Current efforts in the field of single cell analysis focus on the integrative measurement 319 

of multiple modalities per cell. Ultimately, being able to analyze genome accessibility 320 

status, transcript, regulatory RNAs and protein expression all together would allow a 321 

holistic understanding of cellular function, but this has not been achieved yet (Stuart 322 

and Satija, 2019). Arguably one of the most important steps on this trajectory has been 323 

the ability to combine protein and transcript measurements by sequencing at the single 324 

cell level using high-throughput methods (Peterson et al., 2017; Stoeckius et al., 2017). 325 

However, with increased cell numbers, these combined measurements can quickly 326 

become resource intensive, mostly due to the high number of sequencing reads that 327 

are required per cell. Moreover, to fully leverage the advantage of multi-omic single-cell 328 

analysis approaches, it is imperative to collect large cell numbers to adequately 329 

represent low-abundance cellular populations such as antigen-specific T cells, or 330 

antigen-presenting cells. 331 

The targeted transcriptomic approach that we describe here provides an alternative 332 

platform that significantly lowers the number of reads required for sequencing 333 

saturation of transcript compared to whole transcriptome (WTA) approaches, but still 334 

provides valuable information on up to 499 immune-centric genes. Though this 335 

approach sacrifices the unbiased nature of WTA measurements, many immunological 336 

applications center on a set of critical immune effector molecules, such as cytokines, 337 

chemokines or transcription factors. Also, a targeted approach avoids the significant 338 

number of reads used by transcripts encoding ribosomal proteins which are often also 339 

captured using a poly-A based whole transcriptome workflow. Furthermore, as shown 340 
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here, in some cases, targeted analysis can permit higher sensitivity when it comes to 341 

detecting relatively low abundance genes. Overall, in many experimental setups it 342 

might be beneficial to combine both approaches: first utilize a WTA platform to identify 343 

potentially unknown transcripts, and then use a targeted approach (which can be 344 

tailored towards gene sets of interest) for profiling larger cell numbers or interrogating 345 

cellular responses to specific stimuli. We provide proof-of-concept data that as early 346 

as one hour after stimulation CD8+ T cells show heterogeneous patterns of chemokine 347 

expression. Comprehensive chemokine and cytokine profiling of T cells after a very 348 

short stimulus could be very valuable to gain additional insights into their function e.g. 349 

in the context of cancer immunotherapy (Nagarsheth et al., 2017). 350 

The decreased number of reads per cell required for targeted transcriptomics makes 351 

the approach very suitable for combined profiling of transcript and protein for larger 352 

number of cells. Doing so is particularly relevant in the context of T cell biology, where 353 

well established T cell subsets, such as memory T cells and regulatory T cells (Tregs) 354 

up to date have been difficult to resolve in some droplet-based sc-RNAseq studies 355 

solely on the basis of transcript (Zheng et al., 2017). This has been attributed to the fact 356 

that lymphocytes contain a relatively low amount of mRNA, which in combination with 357 

the inherent drop-out rate of sc-RNAseq protocols fails to detect some low abundance 358 

transcripts that are defining these cellular subsets (Stuart and Satija, 2019). This issue 359 

can be alleviated by measuring surface protein markers such as the splice variants 360 

CD45RA and CD45RO, which have been well studied in the context of naïve and 361 

memory T cells, or the IL-2 receptor alpha chain (CD25) and IL-7 receptor (CD127) for 362 

the distinction of Tregs. In addition, parallel measurement of surface protein 363 
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phenotypes allows to link novel cellular clusters (that are defined solely by transcript) 364 

with a large body of literature that used to define cells by surface protein phenotype 365 

only. Finally, the combined measurement approach can be useful to identify targets 366 

with a significant disconnect between transcript and protein expression such as CD69, 367 

probably indicative of active post-transcriptional modifications. 368 

Of note, the development of novel technologies can sometimes outpace our ability to 369 

validate platforms and reagents. Given that typical single cell sequencing experiments 370 

require complex pre-processing steps and are often visualized using dimensionality 371 

reduction techniques such as UMAP or t-SNE, there is a disconnect between the 372 

actual raw data and the interpretation of final heatmaps. While this might be less of a 373 

problem for transcript counts, antibody-based probes require careful validation. Here, 374 

we have used high-dimensional cytometry, highlighting that not all reagents, even if the 375 

same antibody clone is used, perform equally well in a multi-omic sequencing 376 

experiment relative to conventional cytometry. Thus, with the more widespread 377 

adoption of sequencing-based protein measurements, we argue that reagents need to 378 

be carefully tested, preferably with parallel deposition in public databases. 379 

Ultimately, to advance our understanding of biology the field relies on innovative 380 

approaches to analyze and visualize complex high-dimensional data (Butler et al., 381 

2018; Cao et al., 2019; Stuart and Satija, 2019). Due to the different expression scales 382 

this presents a challenge for combined protein-transcript data sets. To alleviate this 383 

problem, we have adopted an analysis approach successfully used for high-384 

dimensional cytometry data, one-dimensional soli expression by nonlinear stochastic 385 

embedding (One-SENSE) (Cheng et al., 2016). By visualizing the top-differentially 386 
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expressed genes in one dimension relative to the measured protein phenotypes this 387 

method allows to easily dissect cells that are similar in transcript, but different in 388 

surface phenotype, and vice versa. This will be a useful tool for biologists to explore 389 

future multi-omic data sets to extract biological meaning from these complex multi-390 

dimensional data. 391 

 392 

  393 
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Figure Legends 419 

 420 

Figure 1: Comparison of oligo-nucleotide antibody probes to high-dimensional 421 

flow cytometry. 422 

(A) Schematic graph describing the workflow of the experiment. PBMC samples from 423 

three donors were split in half, with one aliquot used for the multi-omic workflow, and 424 

one aliquot used for flow cytometry phenotyping using two 30-parameter panels. (B) 425 

Overview of antibody targets used in both the multi-omic and conventional flow 426 

cytometry experiment. (C) Manual gating of main immune subsets using the combined 427 

AbSeq data set (upper panel, red) and concatenated and down-sampled events 428 

(27,000 cells) from the conventional (conv) flow cytometry data set (lower panel, blue). 429 

(D) Manual gating of various T cell markers using the combined AbSeq data set (upper 430 

panel, red) and concatenated, down-sampled events from the cytometry data set 431 

(lower panel, blue). (E) Quantification of main immune subsets in the AbSeq and flow 432 

cytometry data set across the three different donors. (F) Quantification of main T cell 433 

populations and selected phenotyping markers in the AbSeq and flow cytometry data 434 

set across the three different donors. 435 

 436 

Figure 2: Targeted transcriptomics faithfully captures cellular heterogeneity in 437 

peripheral blood mononuclear cells. 438 

(A) Graph-based clustering of the transcript data from one representative donor is 439 

shown on a UMAP (uniform manifold approximation projection) plot. Clusters have 440 
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been annotated by expression of key lineage genes. (B) The top 10-differentially 441 

expressed genes for each cluster were identified using the Seurat implementation of 442 

MAST (model-based analysis of single-cell transcriptomes) and visualized on a 443 

heatmap after z-score normalization. Cluster names are shown in the same color 444 

scheme as in (A). (C) Expression of the indicated transcripts and proteins on the three 445 

different CD4+ T cell clusters, highlighting the CD25+ CD127low Treg cluster. (D) Relative 446 

detection ratio of all detected transcripts relative to a whole transcriptome data set 447 

from the same donor. Genes are manually assigned into four different groups 448 

according to their relative detection ratio. 449 

 450 

Figure 3: Multi-omic targeted transcriptomics identifies canonical memory T cell 451 

populations and allows the study of rare-antigen specific CD8+ T cells 452 

(A) UMAP plots calculated on protein (left) or transcript (right) show that there is no 453 

batch effect across the three donors analyzed. (B) Example UMAP plots (calculated on 454 

transcript) representing the expression of the main immune lineage protein markers 455 

which allow the unequivocal identification of CD4+ and CD8+ T cells, CD19+ B cells, and 456 

CD14+ as well as CD16+ myeloid cells. (C) Example plots showing the poor correlation 457 

of transcript and protein levels for CD4 and CD69, and good correlation for CD8 and 458 

CD27. Protein signal is plotted on the y-axis, transcript on the x-axis. (D) UMAP plot 459 

and graph-based clustering of the CD3+ CD8+CD4- T cell compartment, revealing 5 460 

distinct populations. (E) Examples of top differentially expressed genes identified by 461 

MAST for each of the 5 clusters highlighted in (D). (F) Protein signatures of the 5 462 

clusters identified canonical naive and memory CD8+ T cell subsets, including mucosal 463 
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associated invariant T cells (MAIT cells). (G) One-SENSE plot depicting protein 464 

expression heatmap along the x-axis, and transcript expression heatmap of the top 465 

differentially expressed genes along the y-axis. (H) Identification of EBV-specific CD8+ 466 

T cells relative to all CD8+ T cells, and expression pattern of two differentially 467 

expressed genes between Tetramer-positive cells and Tetramer negative cells in the 468 

effector memory cluster 1. 469 

 470 

Figure 4: Multi-omic analysis of the T and NK cell compartment 1 hour after 471 

stimulation 472 

(A) Representative plots showing the upregulation of selected effector transcripts such 473 

as IFNG, FASL and ICOS after stimulation (red) relative to unstimulated cells (blue). (B) 474 

Disconnect between surface protein expression of the early activation marker CD69 475 

and IFNG and TNF transcript within CD8-protein+ T cells. Blue overlay indicated 476 

unstimulated cells, red stimulated cells. (C) UMAP plot of CD8-protein+ T cells with 477 

manually identified clusters, and CD45RA and CD45RO protein expression. (D) 478 

Heatmap showing the expression of key effector transcripts within the clusters 479 

identified in (C). 480 

 481 

Figure 5: Combined protein and transcript phenotyping of the peripheral myeloid 482 

compartment reveals inflammatory subsets not captured by surface protein 483 

phenotype 484 

(A) UMAP plot and graph-based clustering of the peripheral non T/non NK/non B cell 485 

compartment, revealing 5 distinct populations. (B) Heatmap overlay of CD14- and 486 
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CD16-protein expression. (C) Heatmap of the top differentially expressed genes 487 

identified by MAST for each of the 5 clusters highlighted in (A). (D) Protein signatures of 488 

the 5 clusters identifies canonical CD123+ plasmacytoid DCs, CD1c+ conventional DCs 489 

and CD16+ monocytes, but two of the clusters mapping to CD14+ monocytes. (E) One-490 

SENSE plot depicting protein expression heatmap along the x-axis, and transcript 491 

expression heatmap of some of the top differentially expressed genes along the y-axis. 492 

Red box and arrrows are highlighting the differentially expressed genes between 493 

cluster 0 and 1. (F) Violin plots showing key genes of the respective myeloid population 494 

(upper panel) and differentially expressed genes between cluster 0 and 1, suggesting 495 

the presence of an inflammatory subpopulation within CD14+ CD16- monocytes that 496 

expresses high levels of IL1B, TNF, CXCL3 and CCL4. 497 

 498 

Supplementary figure 1: Example for a poorly performing reagent 499 

(A) Manual gating of main immune subsets using the combined AbSeq data set (upper 500 

panel, red) and concatenated and down-sampled events from the flow cytometry data 501 

set (lower panel, blue), highlighting the population of gd T cells. (B) Heatmap overlay of 502 

the TCRgd signal on a CD4 vs CD8 plot for the AbSeq data set (upper panel) and flow 503 

cytometry data set (lower panel). 504 

 505 

Supplementary figure 2: Comparison of targeted transcriptomics to whole 506 

transcriptome data (WTA) and assessment of required sequencing depth 507 

(A) Graph-based clustering of WTA data obtained from the same donor as in main 508 

Figure 2. (B) Four of the clusters that matched most closely in terms of their expression 509 
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pattern were selected from both experiments and plotted using the top differentially 510 

expressed genes obtained from the targeted transcriptomics approach. Heatmap 511 

represents relative expression after z-score normalization. Left plot shows WTA data, 512 

right plot shows targeted transcriptomic (cells obtained from the same donor). (C) 513 

5,400 cells from a different donor were sequenced at a total depth of approximately 514 

30,000 reads/cell. Upper panel depicts UMAP plot after graph-based clustering and a 515 

heatmap of the top differentially expressed genes (z-score normalized expression) at 516 

full read depth, lower panel using only 20% of the reads. Read depth per cell for the 517 

transcript library is indicated on the right). Squared box on the UMAP plot indicates 518 

one cluster that is separated as cluster 11 at full read depth, but pooled with cluster 8 519 

at lower read-depth (D) Protein signals at the indicated read depths. 520 

   521 
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STAR methods 522 

 523 

Cells 524 

Peripheral blood mononuclear cells (PBMCs) were obtained as cryopreserved samples 525 

from healthy controls (Seattle Area Control Cohort) via the HIV Vaccine Trial network 526 

(HVTN). Vials with cryopreserved cells were thawed at 37°C until a tiny ice crystal was 527 

left in the tube, and then carefully diluted in 1mL of pre-warmed RPMI with 10% FBS 528 

and transferred to a new tube. An additional 13 mL of pre-warmed RPMI with 10% 529 

FBS were added drop by drop, followed by centrifugation for 5 minutes at 400g and 530 

resuspension in 1 mL of RPMI. 531 

 532 

Flow Cytometry and Cell sorting 533 

For flow cytometric analysis good practices were followed as outlined in the guidelines 534 

for use of flow cytometry (Cossarizza et al., 2017). Following thawing, PBMCs were 535 

incubated with Fc-blocking reagent (BioLegend Trustain FcX, #422302) and fixable UV 536 

Blue Live/Dead reagent (ThermoFisher, #L34961) in PBS for 15 minutes at room 537 

temperature. If required, cells were stained with an EBV-Tetramer reagent (peptide 538 

YVLDHLIVV; Fred Hutch Immune Monitoring Core) diluted in FACS buffer (PBS with 539 

2% FBS, Nucleus Biologics) for 30 minutes at room temperature, followed by two 540 

washes. After this, cells were incubated for 20 minutes at room temperature with 541 

antibody master mix freshly prepared in Brilliant staining buffer (BD Bioscience, # 542 

563794), followed by two washes. All antibodies were titrated and used at optimal 543 
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dilution, and staining procedures were performed in 96-well round-bottom plates. 544 

Stained cells were fixed with 4% PFA for 20 minutes at room temperature, washed, 545 

resuspended in FACS buffer and stored at 4°C in the dark until acquisition. 546 

All samples were acquired using a FACSymphony A5 (BD Biosciences), equipped with 547 

30 detectors and 355nm, 405nm, 488nm, 532nm and 628nm lasers and FACSDiva (BD 548 

Biosciences). Detector gains were optimized using a modified voltage titration 549 

approach (Perfetto et al., 2012) and standardized from day to day using 6-peak Ultra 550 

Rainbow Beads (Spherotec, # URCP-38-2K). Single-stained controls were prepared 551 

with every experiment using antibody capture beads diluted in FACS buffer (BD 552 

Biosciences anti-mouse, #552843 and anti-rat, #552844). After acquisition, data was 553 

exported in FCS 3.1 format and analyzed using FlowJo (version 10.5.x, BD 554 

Biosciences). Doublets were excluded by FSC-A vs FSC-H gating. For some of the 555 

plots, the number of acquired cells was down-sampled using the appropriate FlowJo 556 

plugin to match the number of cells analyzed by AbSeq. 557 

All cell sorting was performed on a FACSAria III (BD Biosciences), equipped with 20 558 

detectors and 405nm, 488nm, 532nm and 628nm lasers. For all sorts, an 85 µm nozzle 559 

operated at 45 psi sheath pressure was used. Cells were sorted into chilled Eppendorf 560 

tubes containing 500 µL of RPMI, washed once in PBS and immediately used for 561 

subsequent processing. 562 

 563 

Targeted Transcriptome and protein single-cell library preparation and 564 

Sequencing 565 
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CD45+ live PBMCs and EBV-tetramer+ CD8+ T cells were sequentially labeled using 566 

Single Cell Labelling with the BD Single-Cell Multiplexing Kit and BD AbSeq Ab-Oligos 567 

reagents strictly following the manufacturers protocol (BD Biosciences). Briefly, cells 568 

from each donor or subtype of cells (after sorting) were labelled with sample tags 569 

(Stoeckius et al., 2018). Each sample was washed twice with FACS buffer before 570 

pooling all samples together. Pooled samples were washed one more time and then 571 

stained with AbSeq Ab-Oligos (BD Biosciences). The pooled sample was then washed 572 

twice, counted and resuspended in cold BD Sample Buffer (BD Biosciences) to achieve 573 

approximately 20,000 cells in 620 µl. Single cells from the pooled sample were isolated 574 

using Single Cell Capture and cDNA Synthesis with the BD Rhapsody Express Single-575 

Cell Analysis System following the manufacturers protocol (BD Biosciences). After 576 

priming the nanowell cartridges, the pooled sample was loaded onto two BD 577 

Rhapsody cartridges and incubated at room temperature. Cell Capture Beads (BD 578 

Biosciences) were prepared and then loaded onto the cartridge and incubated prior to 579 

shaking at 1,000rpm at room temperature for 15 seconds on a ThermoMixer C 580 

(Eppendorf). According to the manufacturers protocol, cartridges were washed, cells 581 

were lysed, and Cell Capture Beads were retrieved and washed prior to performing 582 

reverse transcription and treatment with Exonuclease I. cDNA Libraries were prepared 583 

using mRNA Targeted, Sample Tag, and BD AbSeq Library Preparation with the BD 584 

Rhapsody Targeted mRNA and AbSeq Amplification and BD Single-Cell Multiplexing 585 

Kits and protocol (BD Biosciences). In brief, cDNA underwent targeted amplification 586 

using the Human Immune Response Panel primers and a custom supplemental panel 587 

(all targets are listed in Supplementary Table 1) via PCR (10 cycles). PCR products 588 
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were purified, and mRNA PCR products were separated from sample tag and AbSeq 589 

products with double-sided size selection using SPRIselect magnetic beads (Beckman 590 

Coulter). mRNA and Sample Tag products were further amplified using PCR (10 591 

cycles). PCR products were then purified using SPRIselect magnetic beads. Quality 592 

and quantity of PCR products were determined by using an Agilent 2200 TapeStation 593 

with High Sensitivity D5000 ScreenTape (Agilent) in the Fred Hutch Genomics Shared 594 

Resource laboratory. Targeted mRNA product was diluted to 2.5 ng/µL and sample tag 595 

and AbSeq PCR products were diluted to 1 ng/µL to prepare final libraries. Final 596 

libraries were indexed using PCR (6 cycles). Index PCR products were purified using 597 

SPRIselect magnetic beads. Quality of final libraries was assessed by using Agilent 598 

2200 TapeStation with High Sensitivity D5000 ScreenTape and quantified using a Qubit 599 

Fluorometer using the Qubit dsDNA HS Kit (ThermoFisher). Final libraries were diluted 600 

to 2nM and multiplexed for paired-end (150bp) sequencing on a HiSeq 2500 sequencer 601 

(Illumina). 602 

 603 

Whole Transcriptome single-cell library preparation and sequencing 604 

cDNA libraries of CD45+ Live PBMCs were generated using the Chromium Single Cell 605 

3’ Reagent Kits v2 (10x Genomics) protocol targeting 5,000 cells in two separate wells. 606 

Briefly, single cells were isolated into oil emulsion droplets with barcoded gel beads and 607 

reverse transcriptase mix. cDNA was generated within these droplets, then the droplets 608 

were dissociated. cDNA was purified using DynaBeads MyOne Silane magnetic beads 609 

(ThermoFisher). cDNA amplification was performed by PCR (10 cycles) using reagents 610 
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within the Chromium Single Cell 3’ Reagent Kit v2 (10x Genomics). Amplified cDNA 611 

was purified using SPRIselect magnetic beads (Beckman Coulter). cDNA was 612 

enzymatically fragmented and size selected prior to library construction. Libraries were 613 

constructed by performing end repair, A-tailing, adaptor ligation, and PCR (12 cycles). 614 

Quality of the libraries was assessed by using Agilent 2200 TapeStation with High 615 

Sensitivity D5000 ScreenTape (Agilent). Quantity of libraries was assessed by 616 

performing digital droplet PCR (ddPCR) with Library Quantification Kit for Illumina 617 

TruSeq (BioRad). Libraries were diluted to 2nM and paired-end sequencing was 618 

performed on a HiSeq 2500 sequencer (Illumina).  619 

 620 

Cell Ranger processing for WTA data 621 

Raw base call (BCL) files were demultiplexed to generate Fastq files using the 622 

cellranger mkfastq pipeline within Cell Ranger 2.1.1 (10x Genomics). Targeted 623 

transcriptome Fastqs were further analyzed via Seven Bridges (BD Biosciences). Whole 624 

transcriptome Fastq files were processed using the standard cellranger pipeline (10x 625 

genomics) within Cell Ranger 2.1.1. Briefly, cellranger count performs alignment, 626 

filtering, barcode counting, and UMI counting. The cellranger count output was fed into 627 

the cellranger aggr pipeline to normalize sequencing depth between samples. The final 628 

output of cellranger (molecule per cell matrix) was then analyzed in R using the 629 

package Seurat (version 2.3 and 3.0) as described below. 630 

 631 

Seven Bridges processing for targeted transcriptomics data 632 
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Targeted transcriptomics Fastq files were processed via the standard Rhapsody 633 

analysis pipeline (BD Biosciences) on Seven Bridges (www.sevenbridges.com). First, 634 

R1 and R2 reads are filtered for high-quality reads, dropping reads that are too short 635 

(less than 64 bases for R2) or have a base quality score of less than 20. Then, R1 reads 636 

are annotated to identify cell label sequences and unique molecular identifiers (UMIs), 637 

and R2 reads are mapped to the respective reference sequences using Bowtie2. 638 

Finally, all valid R1 and R2 reads are combined and annotated to the respective 639 

molecules. For all of our analysis, we utilized recursive substation error correction 640 

(RSEC) as well as distribution-based error correction (DBEC), which are manufacturer-641 

developed algorithms correcting for PCR and sequencing errors. For determining 642 

putative cells (which will contain many more reads than noise cell labels), a filtering 643 

algorithm takes the number of DBEC-corrected reads into account, calculating the 644 

minimum second derivative along the cumulative reads as the cut-off point. Final 645 

expression matrices contain DBEC-adjusted molecule counts in a CSV format. For 646 

further analysis, these molecule count tables were read into the R package Seurat 647 

(version 2.3 and 3.0) using customized scripts and analyzed as described below. 648 

 649 

Seurat workflow for targeted and WTA data 650 

The R package Seurat (Butler et al., 2018) was utilized for all downstream analysis. For 651 

whole transcriptome data, cells that had at least 200 genes (with ≤ 20% being 652 

mitochondrial genes) were included in analysis. A natural log normalization using a 653 

scale factor of 10,000 was performed across the library for each cell. UMIs and 654 

mitochondrial genes (only for WTA data) were linearly scaled to remove these variables 655 
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as unwanted sources of variation. Dimensionality reduction using UMAP and clustering 656 

was performed on a subset of variable genes. For targeted transcriptomics, no gene 657 

per cell cutoffs were imposed, data were normalized with the same method. However, 658 

when scaling data, UMI was the only regressed variable. Dimensionality reduction 659 

using UMAP and clustering was based on either all genes or all proteins. For 660 

differential gene expression analysis we utilized the Seurat implementation of MAST 661 

(model-based analysis of single-cell transcriptomes) (Finak et al., 2015). For generation 662 

of some FCS files the antibody molecule count tables were converted using the R 663 

packages premessa and flowCore. FCS-files with antibody molecule count signals 664 

were analyzed in FlowJo 10.5.x (BD Biosciences) using either an arcsin transform or 665 

biexponential transform. All the scripts used, listing the detailed parameters for each 666 

step are available at https://github.com/MairFlo/Targeted_transcriptomics. Raw data 667 

will be deposited on the NCBI gene expression Omnibus at 668 

https://www.ncbi.nlm.nih.gov/geo/. 669 

 670 

Data processing for One-SENSE and generation of FCS files 671 

CSV files of raw counts were converted to FCS files using a script adapted 672 

from https://gist.github.com/yannabraham/c1f9de9b23fb94105ca5. Raw counts were 673 

normalized based on total counts per cell, then scaled to a value of 10,000 based on 674 

the Seurat normalization algorithm. A natural log transformation was applied to gene 675 

expression data, while protein expression data was randomized by adding a random 676 

uniform distribution from 0 to 1, followed by transformation with the function 677 

arcsinh(x/5). Dimensionality reduction using UMAP was performed separately on all 678 
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genes and proteins to reduce them to one dimension before plotting. Cells were also 679 

split into 500 bins of equivalent width based on one-dimensional UMAP data, then 680 

used to generate heatmaps colored by median marker intensity per bin. All scripts 681 

used for data processing and plot generation are available at 682 

https://github.com/MairFlo/Targeted_transcriptomics. 683 

 684 
 685 
 686 
  687 
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