MACOVA 2020

These presentations were developed by the respective presenter(s), and the findings, interpretations, and conclusions contained or expressed with them do not necessarily reflect the views of BD. To the extent these presentations relate to specific products, such products should always be used in accordance with the relevant instructions for use and other product documentation. This content should not be copied or distributed without the consent of the copyright holder. For further information, please contact: GMB-EU-MDS@bd.com

MACOVA²⁰²⁰

Multidisciplinary Advanced Course on Vascular Access

Holistic approach to vascular access in the emergency department

Prof. Baudolino Mussa IVAS President

- Increased survival for chronic patients

MACOVA²⁰²⁰

- Medium age of population increased

MACOVA²⁰²⁰

- Short hospital stay in postoperative period

MACOVA²⁰²⁰

- High rate of previous EV treated patients

Venous access: what type, when and for how long?

Venous access: what type?

Devices:

- peripherally-inserted central catheters (PICCs)
- centrally-inserted central catheters (CICCs and FICCs)
- peripheral intravenous catheters (PIVCs)

Devices:

peripherally-inserted central catheters (PICCs)

Are all the same for quality and durability?

peripheral intravenous catheters (PIVCs)

REVIEW ARTICLE

Short- and Intermediate-Term Use of Peripherally Inserted Central Catheters in Europe: A Systematic Literature Review

Baudolino Mussa, MD

CVC Team Torino, Department of Surgical Science, University of Turin, Turin, Italy Corso Achille Mario Dogliotti 14, Turin, Italy

Kim Alsbrooks, BSN, RN, RT (R), VA-BCTM

Becton Dickinson, Franklin Lakes, NJ

Robert Hutcheson, MSc

Certara, Montreal, QC, Canada

Litterature Extraction

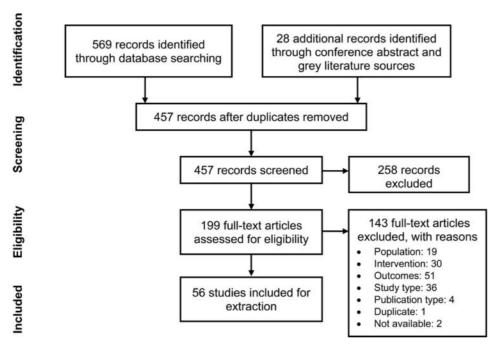


Figure. PRISMA flowchart of the study selection process.

Table 3. Summary of Efficacy Outcomes with PICCs and Comparators

Type of intervention	Patient comfort and satisfaction, % (n)	Pain during catheter insertion, % (n)	Number of venipunctures for catheter insertion (n)	Mean catheter days (<i>n</i>)	Mean catheter dwell time/ duration in days (n)	Placement complications, % (n)
PICC	96.8 (1)	0–18 (5)	1.15*–1.16 (2)	7.9–176.1 (6)	9.4–127 (21)	0-7.4 (16)
PIVC	79.3 (1)	23.4 (1)	2.27 (1)	NR	4.4-7.3 (2)	NR
CICC	NR	12.2 (1)	1 (1)	22.5–98.5 (2)	6.83-324.92 (6)	NR

n = number of interventions; NR = not reported.

^{*}Calculated as a weighted average.

Mean catheter

Table 3. Summary of Efficacy Outcomes with PICCs and Comparators

	i ationt	Humbon	inoun outilot	0.	
	samfart and	Doin during veninung	turas duali tima/	Dissement	
Conc	lusions: This review showed	that PICCs offer seven	al advantages compared to CIC	Cs and PIVCs, incl	uding
oreat	er natient satisfaction, fewer	complications leading	to removal, and less catheter m	igration/dislocation	•

Number of

despite a moderately higher rate of venous thrombosis.

PIVC	79.3 (1)	23.4 (1)	2.27 (1)	NR	4.4-7.3 (2)	NR
CICC	NR	12.2 (1)	1 (1)	22.5-98.5 (2)	6.83-324.92 (6)	NR

n = number of interventions; NR = not reported.

Patient

^{*}Calculated as a weighted average.

What about Port a Cath?

- Long term discontinued therapy (best for use every 28 days)
- All power injectable device

For valved power Pac flushing every 3 months available

SSAGE journals

<u>J Vasc Access.</u> 2017 Jul 14;18(4):325-327. doi: 10.5301/jva.5000740. Epub 2017 Jun 20.

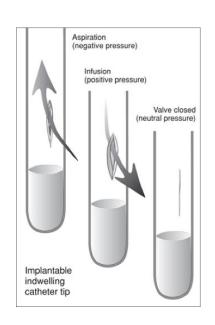
Port in oncology practice: 3-monthly locking with normal saline for catheter maintenance, a preliminary report.

Solinas G¹, Platini F¹, Trivellato M¹, Rigo C¹, Alabiso O^{1,2}, Galetto AS^{1,2}.

What about Picc Port?

- Device with same defects of PAC and PICC (underskin, low flow, pain for use).
- The only indication is saltuary therapy in patient with thorax area not available for implant (Bilateral mammarian cancer, thorax RT ecc.)
- Actually implanting kit is incomplete and procedure more difficult than picc and Port (catheter without spindle ecc.)

What about Tunnelled Cvc?

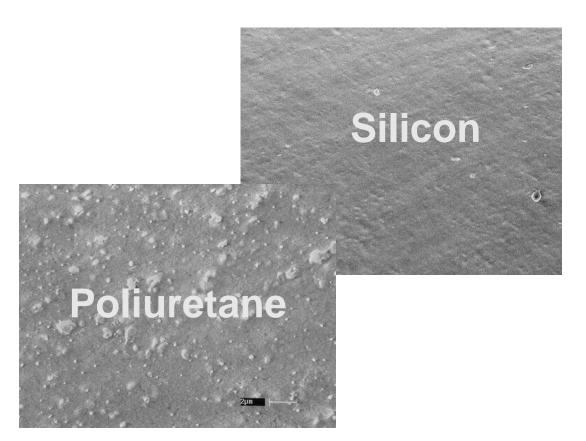


- Long term continued therapy (best for use every day)
- Silicon device can be repaired (long term use)
- Usable also by patient himself (2 hands avaiable)
- In our experience on NPT patients longest survival of device

What is the difference in Picc World?

Valve design

Material



What is the difference in Picc World?

Valve design

Material

A prospective, randomized comparison of three different types of valved and non-valved peripherally inserted central catheters

Mauro Pittiruti¹, Alessandro Emoli², Patrizia Porta², Bruno Marche², Rosa DeAngelis², Giancarlo Scoppettuolo³

TABLE I - PATIENTS AND PICCS

	Solo valve (n=61)	PASV (n=60)	No valve (n=59)
Age (m±SD)	64 (12.1)	61 (10.1)	62 (14.5)
Sex (%male)	36%	38%	33.%
Side (%right)	65%	54%	69%
Length cm (m±SD)	38.5 (5)	40.2 (4.7)	36.7 (6.1)
PICC days (m±SD)	56 (23)	64 (31)	65 (27)
Total PICC days	2780	3699	3422

TABLE II - PRIMARY ENDPOINTS

	Solo valve (n=61)	PASV (n=60)	No valve (n=59)
Irreversible occlusions	1	0	0
Transient occlusions	2	1	2
PWO	1	0	1
Difficulty with gravity infusion	19 (31%)	39 (65%)	0
Removed for occlusion	1	0	0

TABLE III - SECONDARY ENDPOINTS

	Solo valve (n=61)	PASV (n=60)	No valve (n=59)
Infection (CRBSI)	-	-	-
Symptomatic thrombosis	-	1	-
Asymptomatic thrombosis	2	1	1
Dislocation	-	-	-
Intravascular rupture	3	-	
Removal due to rupture	3	_	-

CONCLUSION

There were no significant advantages related to the presence of a proximal valve, either of the 'Solo' type (Bard) or of the 'PASV' type (Navilyst).

REVIEW ARTICLE

Open- vs Closed-Tip Valved Peripherally Inserted Central Catheters and Midlines: Findings from a Vascular Access Database

Table 1. Number of Patients and Implant Days

1000 catheter-days

62.445

73.325

135,778

No. of patients

666

750

1416

Sex

Male

Female

Total

Pietro Antonio Zerla, RN
Antonio Canelli, RN
A.O. Melegnano, Milan, Italy
Giuseppe Caravella, MD
Ales sandra Gilardini, MD
Hospital Pharmacy, A.O. Melegnano, Milan, Italy
Giuseppe De Luca, RN
Strutura Complessa Struttura Infermieristica Tect

Struttura Complessa Struttura Infermieristica Tecnica Riabilitativa Aziendale, A.O. Melegnano, Milan, Italy Raffaella Parini, RN

Palliative Care, A.O. Melegnano, Milan, Italy Marta Gianoli, RN

Oncology, A.O. Melegnano, Milan, Italy

Table 7. Complications for Catheter Type

	Tota	l occiu	sions	PW()		Thro	ombosi	S
Catheter type	No	%	1000 catheter-days	No	%	1000 catheter-days	No	%	1000 catheter-days
PICC Open tip	11	7.97	0.0007	12	6.9	0.0008	5	2.8	0.0003
PICC Groshong	9	6.52	0.00009	53	8.5	0.0005	13	2	0.0001
Midline Open tip	4	2.90	0.005	6	1.9	0.0008	9	2.8	0.0011
Midline Groshong	- 1	0.72	0.0001	13	4.2	0.0009	2	0.6	0.0002

PWO = Persistent withdrawal occlusion; PICC = Peripherally inserted central catheter.

 Valved, closed-tip catheters, despite being used in more complex situations (eg, cancer patients) and for a longer period, registered a clear superiority in terms of overall reliability with fewer complications calculated in days of catheterization. In our opinion a valved catheter is the best solution for PWO because we noted fewer removals resulting in an incomplete course of therapy.

A registry... we need it

The Need for Comparative Data in Vascular Access: The Rationale and Design of the PICC Registry

Constance Girgenti, RN, VA-BC
Presence St Joseph Medical Center, Joliet, IL
Nancy L. Moureau, BSN, CRNI
PICC Excellence. Inc. Hartwell. GA

Approximately 4.3 million peripherally inserted central catheters (PICCs) are placed each year. Currently, there are no national-level comparative data registries to gather information regarding PICC placement, care, or maintenance, and there are no benchmarks or quality measures for vascular access specialists. As the specialty of vascular access

Picc Registry

- Big numbers.... Right answers
- Real situation in Italy experience
- Concrete help for choose the right device

RESEARCH ARTICLE

A retrospective study of the safety of over 100,000 peripherally-inserted central catheters days for parenteral supportive treatments

```
Sara Campagna PhD, RN<sup>1</sup> | Silvia Gonella RN, MSc, PhD student<sup>2</sup> | Paola Berchialla PhD<sup>3</sup> | Carla Rigo RN<sup>4</sup> | Giacomo Morano MD<sup>5</sup> | Pietro Antonio Zerla RN<sup>6</sup> | Raffaella Fuzzi RN<sup>7</sup> | Gianvito Corona MD<sup>8</sup> | Silvana Storto RN<sup>2,9</sup> | Valerio Dimonte RN, MSc, Professor of Nursing Sciences<sup>1,2</sup> | Baudolino Mussa MD<sup>2,10</sup>
```

Results:

TABLE 1 Patient and PICC characteristics according to the reason for PICC removal: Bivariate analysis (n = 1,250)

Variables	All patients	PICC removal because of	PICC removal because of other reasons	
variables	(n = 1,250)	(n = 178)	(n = 1,072)	р
Patient characteristics Female sex, n (%) $(n = 914)$ Age, years (median [IQR]) $(n = 830)$ Onco-hematological disease, n (%)	520 [59.6] 78 [67–84] 701 [56.7]	89 [60.5] 74 [61-82] 77 [43.3]	431 [56.2] 79 [68-85] 624 [58.2]	0.376 <0.001 <0.001
PICC characteristic PICC system, n (%) (n = 1,250) Open Valved	212 [17.0] 1,038 [83.0]	33 [18.5] 145 [81.5]	179 [16.7] 893 [83.3]	0.618
Insertion location, n (%) Left side (n = 1,249) Accessed vein (n = 1,250) Basilic Brachial Cephalic	307 [24.6] 982 [78.6] 252 [20.2] 16 [1.3]	57 [32.0] 137 [77.0] 39 [21.9] 2 [1.1]	250 [23.3] 845 [78.8] 213 [19.9] 14 [1.3]	0.017 0.810
Dwell-time, days (median [IQR]) (n = 1,249) Open-system Valved system	46 [19-120] 33 [21-75] 52 [19-124]	67 [28-180] 29 [13-88] 89 [32-254]	43 [18-113] 33 [22-70] 48 [18-120]	<0.001 0.283 <0.001

Note. AEs: adverse events; IQR: interquartile range; PICC: peripherally-inserted central catheter.

^aAEs were defined as one or more of the following: Occlusion, exit-site infection, or symptomatic thrombosis.

Results:

TABLE 1 Patient and PICC characteristics according to the reason for PICC removal: Bivariate analysis (n = 1,250)

	All patients	PICC removal because of	PICC removal because of other reasons	
Variables	(n = 1.250)	(n = 178)	(n = 1.072)	מ
and 0.23 per 1,000 PICC	days, respective	ly. The median dv	vell-time between l	PICC
insertion and its removal b	pecause of an AF	was 67 days (inte	erquartile range 28-	-180
days). Risk of PICC remov	al due to AE wa	s higher with ope	n-system PICCs [ha	zard
ratio = 2.75, 95% confiden	ce intervai 1.52-	-4.96]. In this stud	y, we found prelim	inary
evidence that PICCs can	n be safely use	ed to administer	parenteral suppo	rtive
treatments lasting up to 6	months. PICCs	may be a relevant	alternative to cent	trally
inserted catheters for med	dium-term paren	teral supportive tr	reatments.	

Dwell-time, days (median [IQR]) (n = 1,249)	46 [19-120]	67 [28-180]	43 [18-113]	<0.001
Open-system	33 [21-75]	29 [13-88]	33 [22-70]	0.283
Valved system	52 [19-124]	89 [32-254]	48 [18-120]	<0.001

Note. AEs: adverse events; IQR: interquartile range; PICC: peripherally-inserted central catheter.

^aAEs were defined as one or more of the following: Occlusion, exit-site infection, or symptomatic thrombosis.

PICC, CICC and PIVC all could be used safely in Emergency department.

MACOVA²⁰²⁰

- 1) Question: how many flow do I need?
- 2) How many lines do I need?
- 3) Has patient a VAD?
- 4) Is the VAD working correctly?
- 5) Is the VAD useful for our use?
- 6) Does VAD must used after ED?

MACOVA²⁰²⁰

1) Question: how many flow do I need?

For high flow better a CICC

For low flow better a Picc

If there is a VAD check and use, for more flow

Powerglide or Power Midline

MACOVA²⁰²⁰

2) How many lines do I need?

Picc lines have until 3 lines.

Midline also

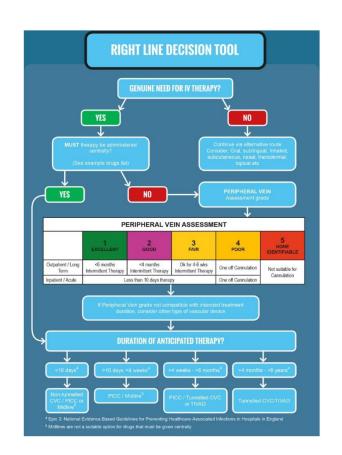
If VAD present possible to place Powerglide

Or Power Midline

MACOVA²⁰²⁰

- 3) Has patient a VAD?
- 4) Is the VAD working correctly?
- 5) Is the VAD useful for our use?
- 6) Does VAD must used after ED?

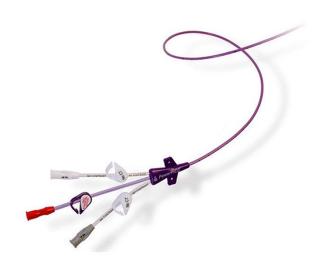
Take in mind patient's future

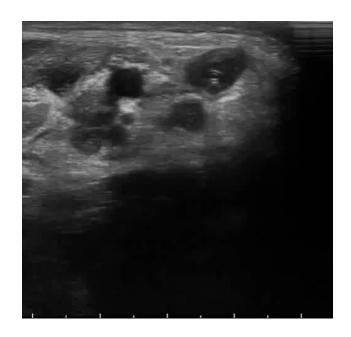

- US guidance for VAD
- ECG check for tip
- Veins saving algorithm
- Reduce infection VAD related
- New class of VAD
- New products

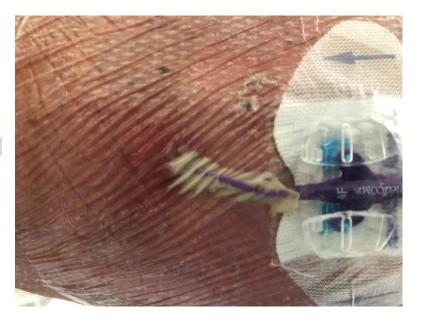
- US guidance for VAD
- ECG check for tip
- Veins saving algorithm
- Reduce infection VAD related
- New class of VAD
- New products

- US guidance for VAD
- ECG check for tip
- Veins saving algorithm
- Reduce infection VAD related
- New class of VAD
- New products

- US guidance for VAD
- ECG check for tip
- Veins saving algorithm
- Reduce infection VAD related
- New class of VAD
- New products




- US guidance for VAD
- ECG check for tip
- Veins saving algorithm
- Reduce infection VAD related
- New class of VAD
- New products


- US guidance for VAD
- ECG check for tip
- Veins saving algorithm
- Reduce infection VAD related
- New class of VAD
- New products

- Thrombosis
- Difficult treatment for infection
- Bad patient communication
- Too much PIV and too much bad placed

- Thrombosis
- Difficult treatment for infection
- Bad patient communication
- Too much PIV and too much bad placed

- Thrombosis
- Difficult treatment for infection
- Bad patient communication
- Too much PIV and too much bad placed

- Thrombosis
- Difficult treatment for infection
- Bad patient communication
- Too much PIV and too much bad placed

Patient first

