These presentations were developed by the respective presenter(s), and the findings, interpretations, and conclusions contained or expressed with them do not necessarily reflect the views of BD. To the extent these presentations relate to specific products, such products should always be used in accordance with the relevant instructions for use and other product documentation. This content should not be copied or distributed without the consent of the copyright holder. For further information, please contact: GMB-EU-MDS@bd.com

MACOVA

The importance of safety


MACOVA

Multidisciplinary Advanced Course

Gabriella De Carli, MD on behalf of the Italian Study Group on Occupational Risk of HIV (SIROH)

> Department of Epidemiology, Pre-clinical Research and Advanced Diagnostics National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy www.inmi.it - SIROH - siroh@inmi.it

"Many nurses avoid as far as possible the care of infectious disease cases, and for two reasons: they realize their insufficient training and fear the possible consequences.

Both these obstacles can be removed by a thorough training in fever nursing which transmission and methods for Health and safety of HCW is prevention.

Aseptic Fever Nursing Author(s): D. L. Richardson Source: The American Journal of Nursing, Vol. 15, No. 12 Published by: Lippincott Williams & Wilkins Stable URL: http://www.jstor.org/stable/3405284 Accessed: 15-09-2017 15:08 UTC

Fever nursing aims, fundamentally, at these two objects: the intelligent care of the patient in order that he ma

paramount and closely linked to the health of patients

11

SU

Ex

dif

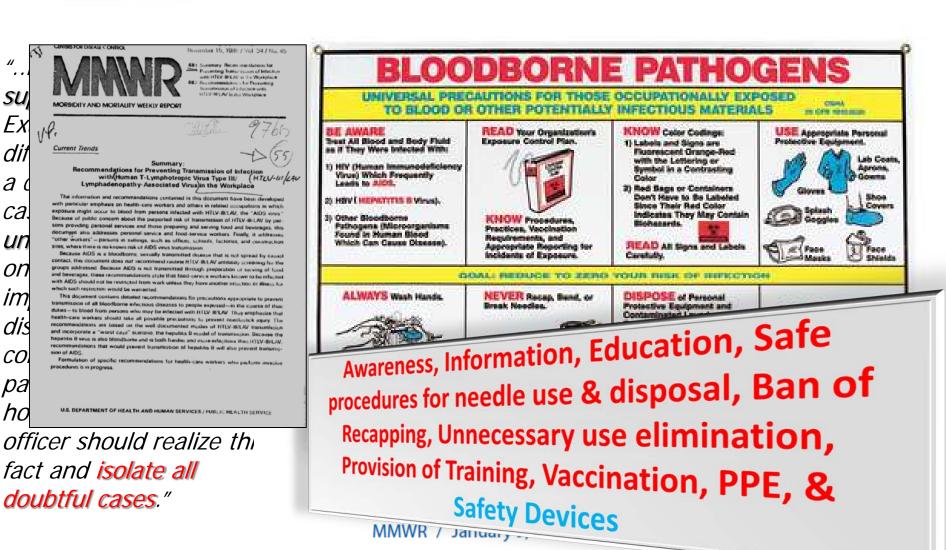
a

СД.

un

on

İM


dis

CO

ра ho 114.

10

FIGURE. Number of confirmed cases (N = 58) of occupationally acquired HIV infection among health care workers reported to CDC United States, 1985–2013

The Brick Wall of Safety

Needle and Sharps Injuries Prevention Patients' safety

$P inf. = P \times E \times F$

Pinf. = Probability to acquire an occupational infection

- P = Probability that sources are BBV-infected (prevalence)
- **E** = Efficacy of transmission
- **F** = Frequency of exposure

			Cumulative		2017
		Country, territory or area*	total	Rate	N
Figure 6. Estimat prevalence estin		EU/EEA			
		Austria	9 5 4 3	3.1	270
		Belgium	30 618	7.9	890
4000000 -		Bulgaria	2 747	3.4	241
		Croatia	1538	2.5	106
3500000		Cyprus	1 148	10.0	85
3000000 -		Czech Republic	3 160	2.4	254
2500000 -		Denmark	7 591	4.2	242
2000000 -		Estonia	9 7 1 1	16.6	219
1500000 -		Finland	3 911	2.9	158
1000000 -		France	83 306	7.8	5 211
500000 -		Germany ^e	60 688	-	-
0		Greece	16 669	5.8	628
0 +		Hungary	3 567	2.3	223
-		Iceland	385	7.2	24
,		Ireland ^d	8 8 3 8	10.2	483
		Italy	44 139	5.7	3 443
Figure 7. Esti		Latvia	7 343	18.8	371
prevalence es		Liechtenstein	67	0.0	0
		Lithuania	3 012	9.1	263
		Luxembourg ^d	1641	10.2	59
3500000 -		Malta HIV	432	10.4	45
	V	Netherlands	26 129	4.2	716
3000000 - es	w diagnose	Norway New di	6 291	4.1	213
2300000		Poland	22 798	3.5	1 325
2000000 -	d rates per	Portugal and rat	57 913	10.3	1068
1500000 -	000	Romania 100 00	23 063	3.3	661
1000000 -		Slovakia	869	1.3	70
	pulation	Slovenia popula	836	1.9	39
500000 -	08-2017	Spain 2008-2	48 636	7.0	3 249
0 -		Sweden	12 569	4.4	434
		United Kingdom	155 267	6.7	4 363
		Total EU/EEA			

Raising Awareness

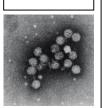
ated number of HBsAg-positive individuals by country, based on general population mates

Netherlands

HIV Seroconversion rate (SC),

following exposure to blood

SIROH, 1986-2017

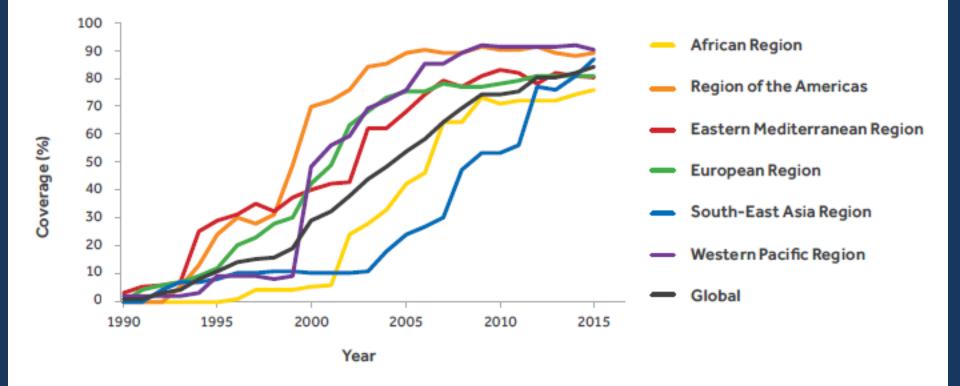

	Type of exposure	SC/exp	% rate	95% CI
1986-1996	Percutaneous	3/2066	0.14	0.03-0.42
pre-HAART	Mucous cont.	2/486	0.41	0.05-1.48
	Non-intact skin	0/547	0	-0.67
1997-2017 post-HAART	Percutaneous	1/1516	0.07	0.006-0.38
•	Mucous cont.	0/727	0	-0.52
	Non-intact skin	0/285	0	-1.30

Quantification of risks

HCV seroconversion (SC) rates,

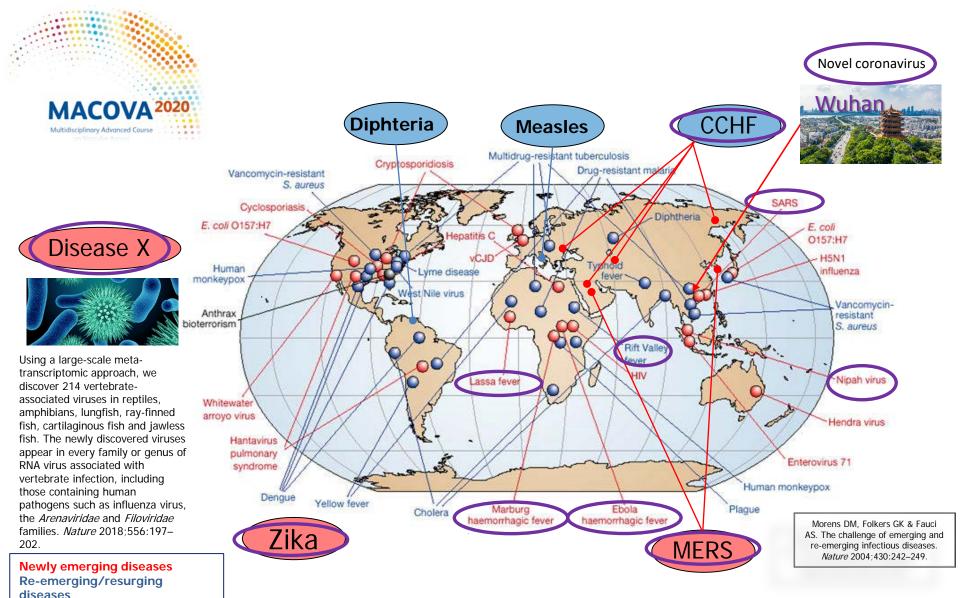
following exposure to blood SIROH, 1994-2017

HBV


HCV

Type of exposure (blood only)	SC/exp	% rate	95% CI
Percutaneous exposure	41/13737	0.32	0.21-0.39
Hollow-bore, blood-filled needle	36/3640	1.00	0.69-1.36
Hollow-bore needle	1/3943	0.03	.006 -0.14
Solid needle/sharp	4/5860	0.07	.001-0.10
Mucous contamination	1/3887	0.03	.006-0.14
Conjunctival exp to blood	1/3060	0.04	.006-0.18
Other membranes to blood	0/827	0	-0.44
Non intact skin cont, with blood	0/1740	0	-0.20
Percutaneous exposure	1/347	0.30	.006-1.67
Susceptible subjects (118 vaccinated after exposu	ire)		

Fig. 4. Three-dose hepatitis B vaccine coverage, by WHO region, 2000–2015: a major increase in coverage at the beginning of the 21st century



Cases of occupational infections or diseases acquired through a needle or sharps injury in the health care or laboratory setting (by year of publication of the first report in the literature)

Bacterial	Viral	Protozoal	Fungal	Tumoral
 Syphilis, 1913 Diphteritis, 1923 Leptospirosis, 1937 Scrub typhus, 1945 Gonhorrea, 1947 Brucellosis, 1966 Rocky Mountain 	 Herpes simplex, 1962 Haemorragic fevers (Ebola, Marburg, Machupo, Sabia, etc), 1974 Kyasanur virus, 1975 Herpes Zoster, 1976 Hepatitis B, 1982 	 Toxoplasmosis, 1951 Malaria, 1972 Leishmaniasis, 1997 Trypanosomiasis, 2001 	 Blastomycosis, 1903 Sporotrichosis, 1977 Cryptococcosis, 1985 (from a HIV-infected patient without acquiring HIV, 1994) 	 Human colonic adenocarcinoma 1986 Sarcoma, 1996
Spotted Fever, 1967 Mycoplasmosis, 1971 Mycobacteriosis, 1977 Biskottsia tumbi 1978	 Human Immunodeficiency Virus (HIV), 1984 Hepatitis D, 1986 Creutzfeldt-Jakob, 1988 			
<i>Rickettsia typhi</i> , 1978 Staphylococcus aureus, 1983	Herpesvirus simiae, 1991Hepatitis C, 1992			
Streptococcus pyogenes, 1980	 Simian immunodeficiency virus, 1994 			
-Necrotizing fasciitis, 1997	 <i>Dengue</i>, 1998 Hepatitis G, 1998 	Dai	sing Awar	eness
Tuberculosis, 1931 (from a HIV-infected patient without acquiring HIV, 1998)	 West Nile virus, 2002 Human T-lymphotropic Virus II, 2006 Chikungunya, 2006 Hepatitis C Virus-NS3 recombinant vaccinia virus, 2007 Hepatitis E, 2007 Cytomegalovirus, 2008 			
	 Vaccinia virus, 2008 Crimean Congo Haemorrhagic Fever, 2009 			G, Abiteboul D, Puro V n Med (Zagreb) 2014;

24:45-56

*cases of pathogens or diseases enlisted in italics involved also or exclusively laboratory workers.

Deliberately emerging diseases Prioritized diseases WHO 2018

Raising Awareness

Epidemiology of Ebola virus disease transmission among health care workers in Sierra Leone, May to December 2014: a retrospective descriptive study

on an est 12 % were

Ebola Doctors Are Divided on IV Therapy in Africa

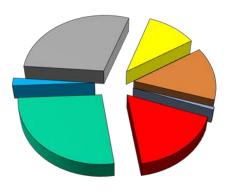
By DONALD G. McNEIL Jr. JAN. 1, 2015 NYT

Medical experts seeking to stem the Ebola epidemic are sharply divided over whether most patients in West Africa should, or can, be given intravenous hydration, a therapy that is standard in developed countries. [...]

IPC training was intensified

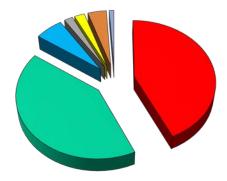
The group's overwhelmed doctors do what they can, officials said, but **it is hard to insert needles while wearing three pairs of gloves and foggy goggles.** IVs must be monitored, drawing virus-laden blood for tests is dangerous, and patients yank needles out sometimes in delirium, sometimes just to go to the toilet when no nurse is around.

Doctors Without Borders normally puts IV lines in as many Ebola patients as it can manage, said Dr. Armand Sprecher, an Ebola expert with the organization. That practice was temporarily stopped in September, when the disease was spreading so fast that doctors had only one minute per patient during the one hour they could work in their sweltering protective suits.


Risk factors for acquiring an occupational infection following a percutaneous exposure

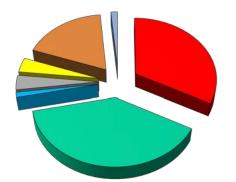
Risk factor	Added risk of acquiring HIV (adj. OR, CI 95%) ¹	Added risk of acquiring HCV (adj. OR, CI 95%) ²
Deep injury	15,34 (6,01-41,05)	155,2 (7,1-3417,2)
Visible blood on the device	6,18 (2,15-20,74)	
Device posed in vein or artery	4,33 (1,71-11,89)	100,1 (7,3-1365,7)
Source patient with terminal illness	5,60 (1,99-16,06)	
Viremia > 6 log ₁₀ cp/mL		11,0 (1,1-114,1)
Zidovudine PEP	0,19 (0.06-0,52)	
Male healthcare worker		3,1 (1,0-10,0)

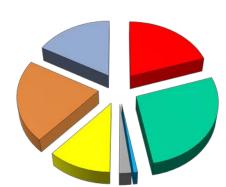
¹Cardo DM , Culver DH, Ciesielski CA et al. N Engl J Med 1997;337:1485-90 ²Yazdanpanah Y , De Carli G, Migueres B et al. Cl Infect Dis 2005; 41:1423-30.

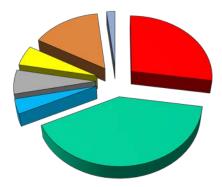

Map of risk: Device involved in NSI by area

Surgical area

Critical area

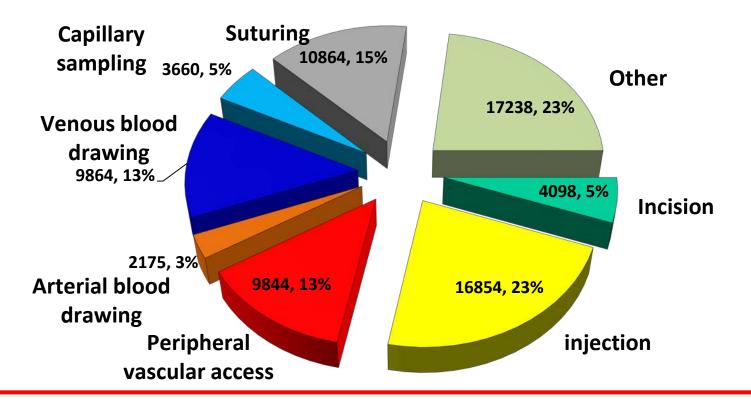



Services



Non hospital setting

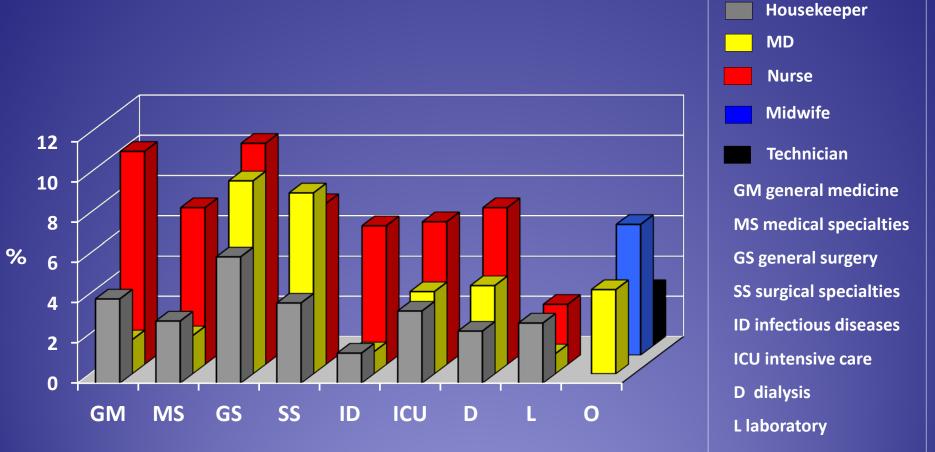
Map of risk



- Hollow-bore, blood-filled
- Lancet
- ScalpelGlass ol
 - Glass objects

- Hollow-bore, injection
- Suture
- Sharps

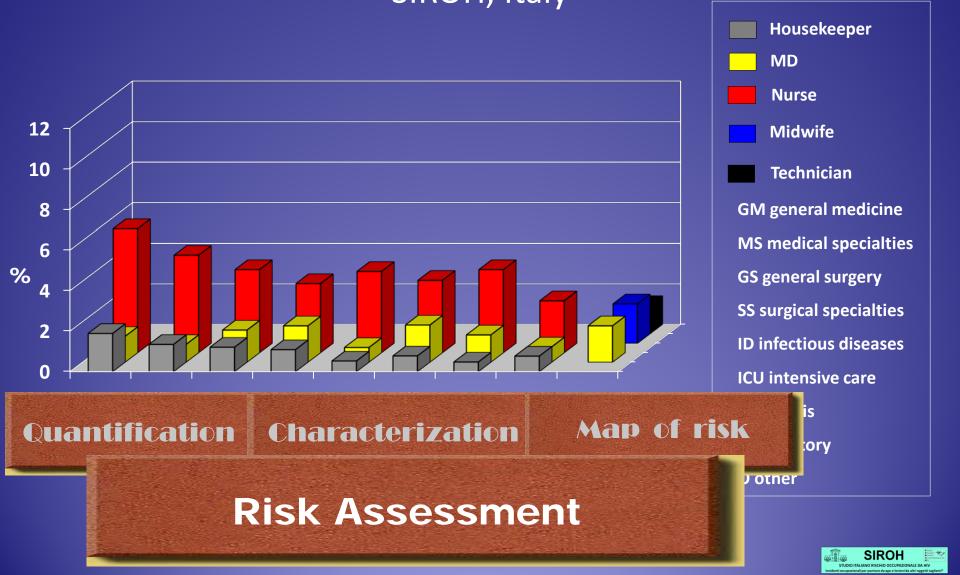
Map of risk: Procedure being performed when the NSI occurred



ED: RR of sustaining a NSI with IV catheters vs other areas: 3.00 (CI 95% 1.95-3.75)

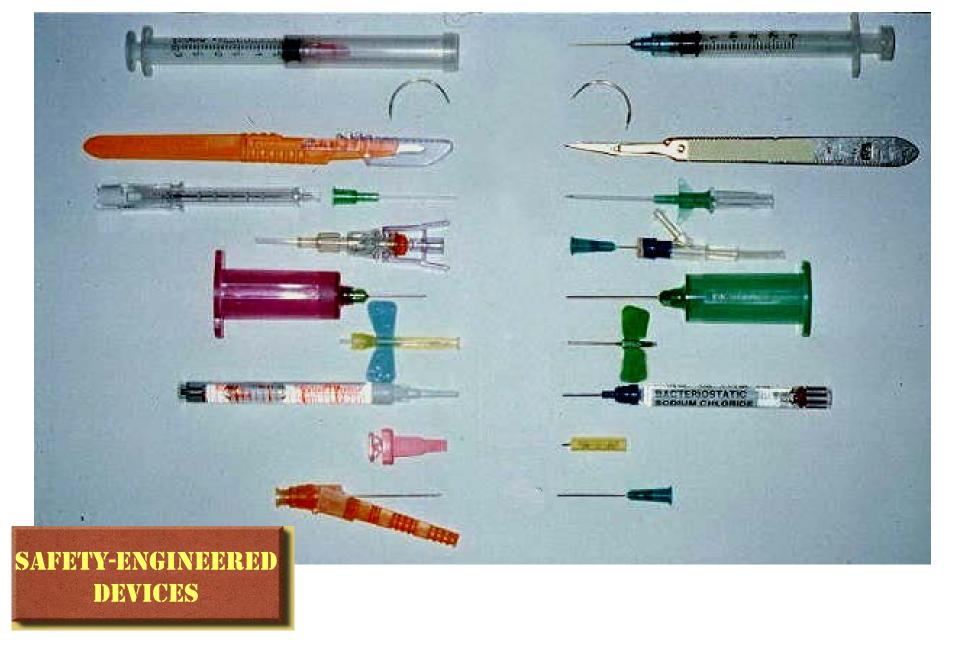
Map of risk

Percutaneous exposures per 100 full-time equivalents, by job category and area SIROH, Italy

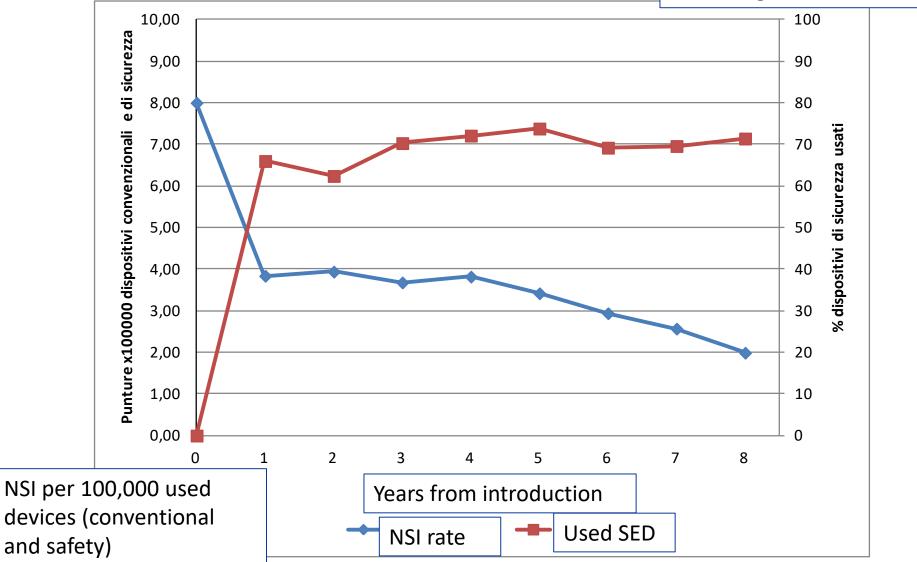

O other

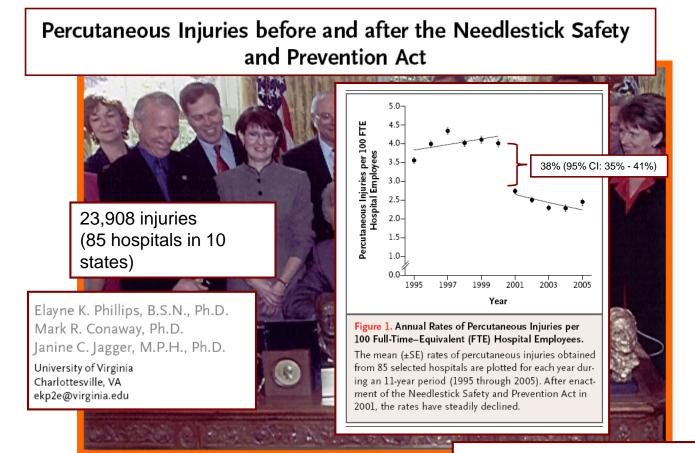
Map of risk

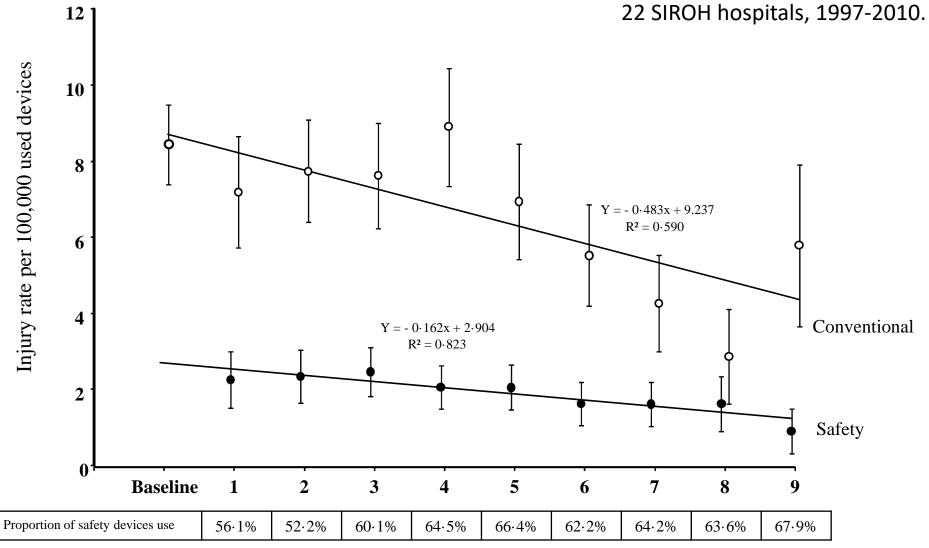
Puro V, De Carli G, Petrosillo N, Ippolito G and the SIROH Group. Infect Control Hosp Epidemiol 2001; 22:206-10.

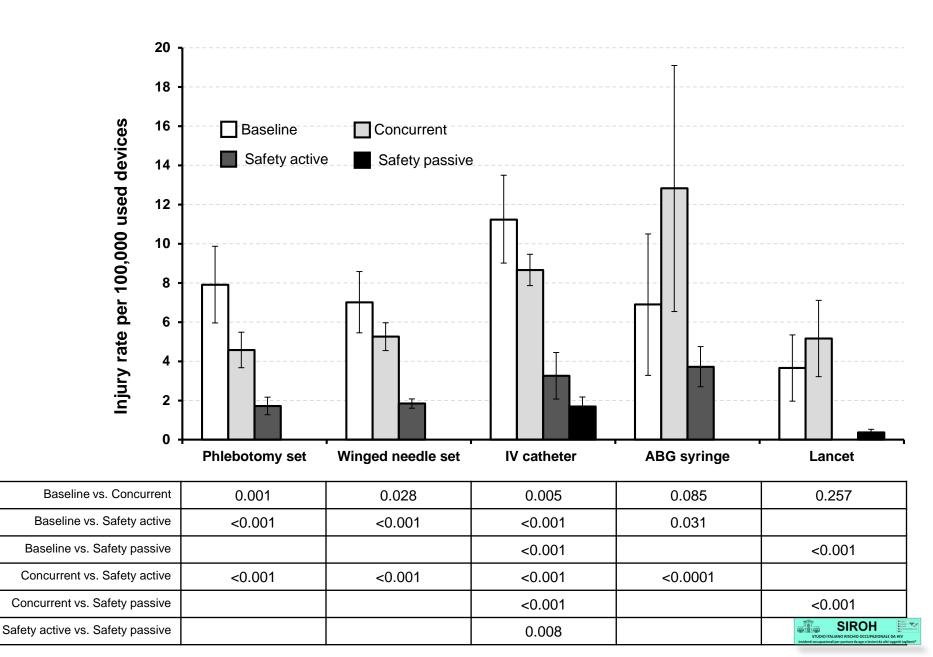

STUDIO ITALIANO RISCHIO OCCUPAZIONALE DA HIV Incidenti occupazionali en punture da azio a teatri ografica da Atri ografica i talienti 41

<u>High-risk</u> Percutaneous exposures per 100 FTE, by job category and area SIROH, Italy

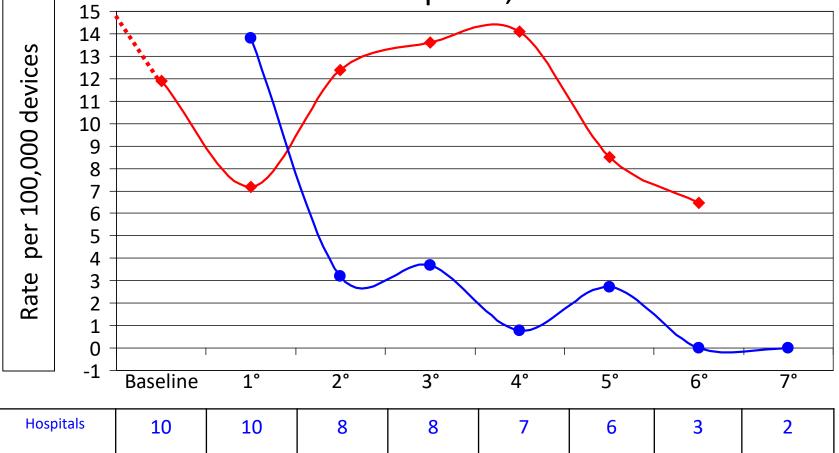

Risk of infection	Critical	Fistula needle Spinal needle	IV catheter stylet	Phlebotomy needle		
of blood or other body fluid potentially inoculated through a needlestick or cut (CONSEQUENCES)	Serious	Thoracentesis Paracentesis	Scalpel	Lancet	Surgical instruments	
	Medium	Culture inoculation (laboratory)	IV injection	IM injection	SC injection	
	Low	Brain electrodes Electromyography electrodes	Needle for drug reconstitution/ preparation	Insulin pen needle	Suture needle	
		Rarely	Sometimes	Often	Frequently	
	Frequency of injury occurrence (likelihood)					
Adoption of safety devices integrating a protection mechanism <u>essential</u> . Hepatitis B vaccination and staff education and training <u>mandatory</u> .						
Adoption of safety devices integrating a protection mechanism recommended. Hepatitis B vaccination and staff education and training mandatory.						
Staff education and training to achieve the highest obtainable safety level. Replacement with blunt needle, or needle elimination if alternatives are available.						


SAFETY-ENGINEERED DEVICES


The Needlestick Safety and Prevention Act (6/11/2000)


N ENGLJ MED 366;7 NEJM.ORG FEBRUARY 16, 2012

SAFETY-ENGINEERED DEVICES


Needlestick rates, conventional vs safety-engineered devices

Efficacy of safety hollow-bore, blood-filled devices 22 SIROH hospitals, 1997-2010

Needlestick rate per 100,000 IV catheters 10 hospitals, SIROH

Conventional Devices	480851	376100	346923	323404	305270	305649	61742	
Safety Engineered		79581	93370	108289	126447	110052	51912	22736

SIROH

2007 guideline for isolation precautions: preventing transmission of infectious

TABLE 4. RECOMMENDATIONS FOR APPLICATION OF STANDARD PRECAUTIONS FOR THE CARE OF ALL PATIENTS IN ALL HEALTHCARE SETTINGS (See Sections II D -II J, and III A 1)

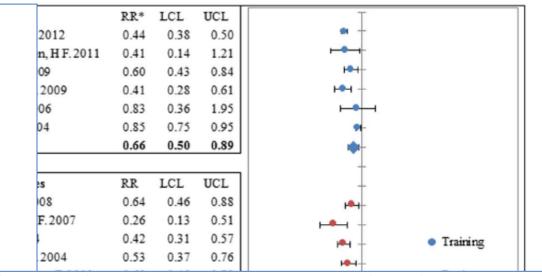
ſ					
	COMPONENT Needles and other sharps			RECOMMENDATIONS	
				Do not recap, bend, break, or hand-manipulate used needles; ecapping is required, use a one-handed scoop technique only	
				ise safety features when available; place used sharps in ouncture-resistant container	
	E. Patchen Dellinger, MD, Professor of Surgery, Uni- versity of Washington School of Medicine Jeffrey Engel, MD, Head, General Communicable Disease Control Branch, North Carolina State Epidemiologist Steven M. Gordon, MD, Chairman, Department of Infections Diseases, Hospital Epidemiologist, Cleveland Clinic Foundation Lizzie J. Harrell, PhD, D(ABMM), Research Professor of Molecular Genetics, Microbiology and Pathology, Associate Director, Clinical Microbiology, Duke Univer- sity Medical Center Carol O'Boyle, PhD, RN, Assistant Professor, School of Nursing, University of Minnesota David Alexander Pegues, MD, Division of Infec- tious Diseases, David Geffen School of Medicine at UCLA	Nebraska Medical Center HICPAC membership (past) Robert A. Weinstein, MD (Chair), Cook County Hos pital, Chicago, IL Jane D. Siegel, MD (Co-Chair), University of Texa Southwestern Medical Center, Dallas, TX Michele L. Pearson, MD (Executive Secretary Centers for Disease Control and Prevention, Atlanta GA Raymond Y.W. Chinn, MD, Sharp Memorial Hospita San Diego, CA Alfred DeMaria, Jr, MD, Massachusetts Departmer of Public Health, Jamaica Plain, MA James T. Lee, MD, PhD, University of Minnesota Minneapolis, MN William A. Rutala, PhD, MPH, University of Norti Carolina Health Care System, Chapel Hill, NC William E. Scheckler, MD, University of Wisconsir	5 - -		J
	(Am J Infect Control 2007;35565-164.) 0196-6553;322:00 This is a U.S. Government work: There are no restrictions on its use. doi:10.1016/j.ajic.2007.10.007	Madison, WI Beth H. Stover, RN, Kosair Children's Hospital, Louis ville, KY Marjorie A. Underwood, RN, BSN CIC, Mt Diabl Medical Center, Concord, CA S6		Siegel JD, Rhinehart E, Jackson M, Chiarello L, and the HICPAC. Am J Infect Control 2007;35:S65-164.	

Needlestick Injury Rates According to Different Types of Safety-Engineered Devices: Results of a French Multicenter Study

TABLE 1. Needlestick Injury (NSI) Incidence Rates According to the Type of Safety-Engineered Device

Type of device	No. of devices purchased	No. of NSIs reported	No. of NSIs/1 × 10⁵ devices purchased
Insulin pen needles	22,540	0	0.00
Lancets	8,624,518	2	0.02
Arterial blood syringes	624,946	7	1.12
Prefilled syringes	4,342,861	55	1.27
Vacuum tube blood-collection devices	2,248,630	48	2.13
Fistula needles	45,156	1	2.21
Injection needles and/or syringes	184,207	5	2.71
Intravenous catheters	1,801,107	68	3.78
Winged steel needles	4,176,912	257	6.15
Implantable port needles	62,003	10	16.13

overall frequency of NSIs was 2.05 injuries per 100,000


INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY APRIL 2010, VOL. 31, NO. 4

Prevention of Needle-Stick Injuries in Healthcare Facilities: A Meta-Analysis

Tarigan LH, Cifuentes M, Quinn M, Kriebel D. Infect Control Hosp Epidemiol. 2015 Jul;36(7):823-9.

Education/training (6 studies) -34% (0.66, 0.50-0.89)


Safety-Engineered Devices (SED) (5 studies) -49% (0.51, 0.40-0.64)

Education/training -62% (0.38, 0.28-0

Education and Training

SAFETY-ENGINEERED DEVICES Combining the 2 intervention approaches (training and SEDs) appears to be more effective than either intervention alone. This finding is in line with the conclusions of Ippolito et al,³¹ who argued that successful NSI prevention needed to encompass many different interventions. Our finding that SEDs appear to be more effective than training was not surprising because SEDs reduce the exposure by modifying or isolating the hazard.^{32,33} Training, in contrast, aims to reduce the risk by modifying the behavior of the subject (HCWs) without modifying the hazard from the devices.

"And so, without further ado, here's the author of *Mind over Matter* ..."

It should be taken in mind that technological improvements can only be part of the solution. HCW must be aware, concerned and participate actively to reduce NSI to the best extent.

EU Directive on the prevention of sharps injuries: a joint effort

Home >

Gallery - Madrid Summit 2010

Isiún Eorpach European Misiún Eorpach European Ion Európai Bizottság Europai Romincura Comisia Euro Misión Europea Euroopai Evropská komise Euro rropska ko ission Europea Europai Evropská komise Euro ropska ko ission Europai Europai A Komisi

Stephen Hughes MEP, Grete Christensen, President of the European Federation of Nurses Associations (EFN), Cliff Williams Co-Chair EBS and Unison, Rudolph Cini, Vice-President of the International Council of Nurses (ICN), Dave Prentis General Secretary Unison

Dr Gabriella de Carli, Departament EP of Epidemiology. National Institute for Infectious Diseases. Italy

Karen Jennings, Chair of the ament EPSU's Healthcare Committee and titute UNISON's Head of Healthcare

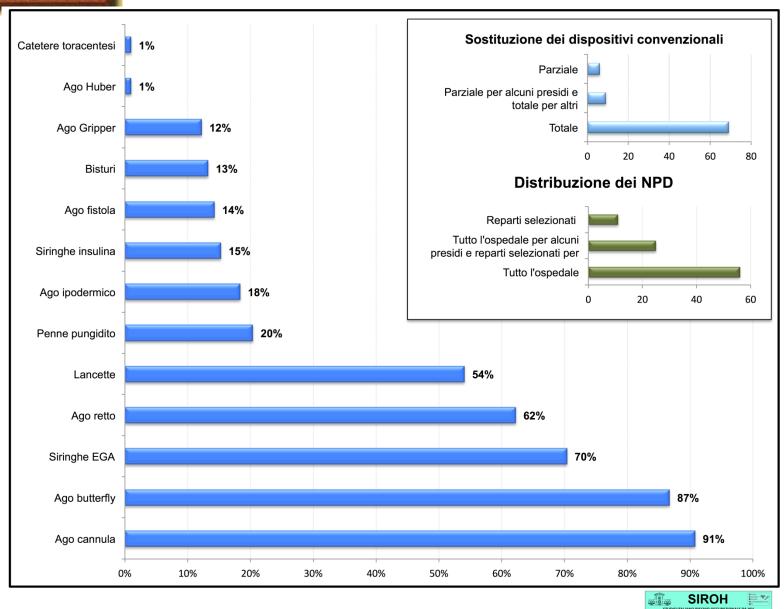
Dr Andreas Wittmann, Department of Safety Engineering. University of Wuppertal, Germany, Dr Janine Jagger Professor of Internal Medicine. University of Virginia, USA

Official Journal of the European Union

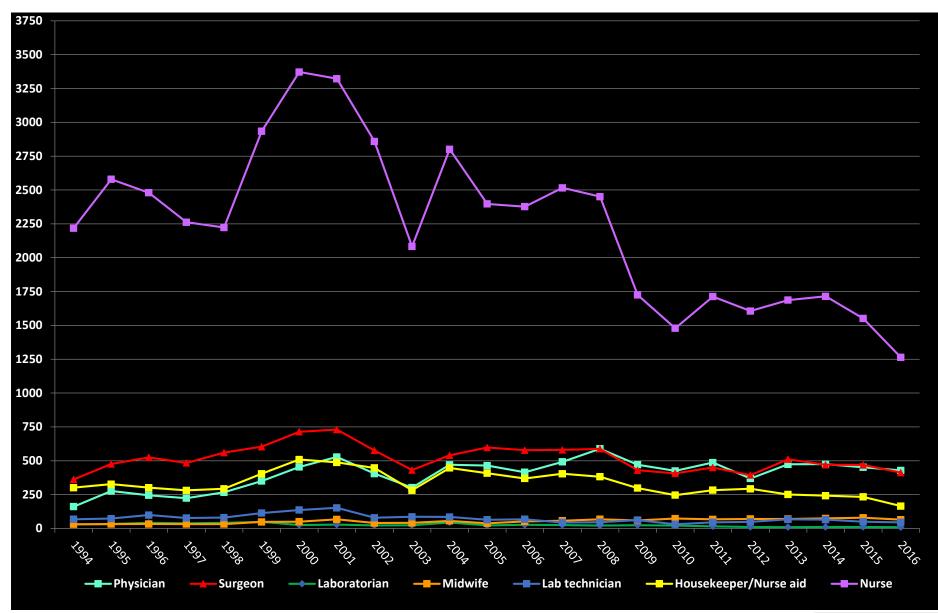
• Health and safety of HCW is paramount and closely linked to the health of patients.

To achieve the safest possible working environment, [we must:]

- set up an **integrated approach to prevention** from sharp injuries,
- applying to **all** workers,
- who should be **well trained**, adequately resourced and secure.

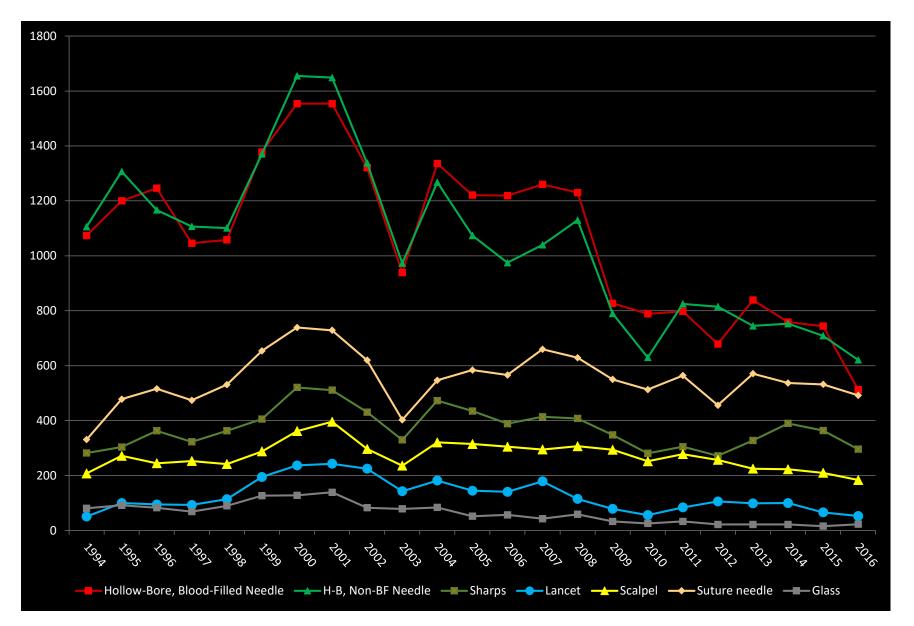

- Never assuming that there is no risk,
- employers and HCW shall work together, to create a safe working environment, [for which]
- a combination of planning, awareness-raising, information, training, prevention and monitoring measures is essential,
- promoting a **no blame culture** in reporting.

SAFETY-ENGINEERED DEVICES

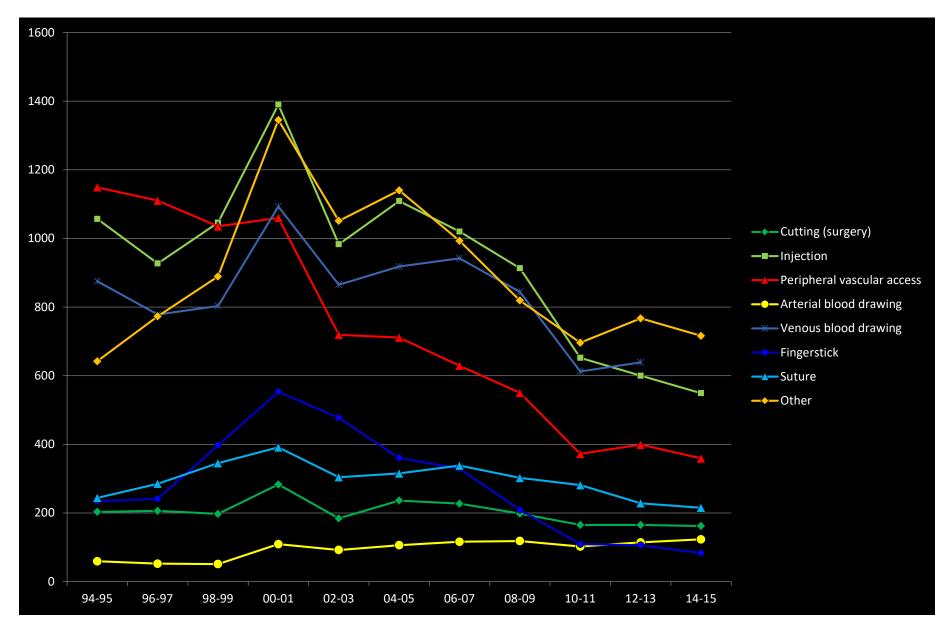

Needlestick-prevention devices implementation in 100 SIROH hospitals (June 2013)

Which type of risk assessment? Answer:

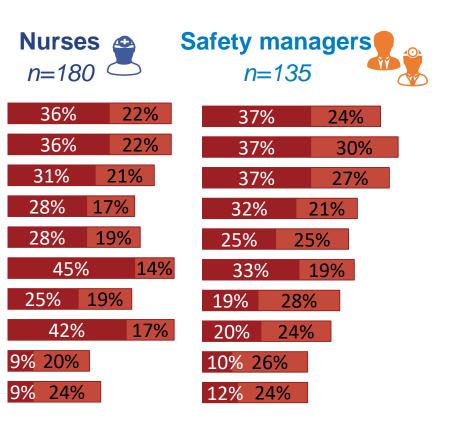
- Analysis of NSI in previous years: 16 hospitals
- Risky procedure in high-risk unit: 10 hospitals
- Units with high prevalence of bloodborne pathogens: 2 hospitals



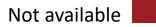
Time trend of NSI by job category - SIROH, 1994-2016 (n=83883 out of 87540)



Time trend of NSI by type of involved device - SIROH, 1994-2016



Registered nurses: temporal trend of NSI by procedure



Implementation of devices integrating a safety mechanism Italian National Safety Observatory – 2017 – 97 hospitals

Hypodermic needles (IM injection) Drug administration (needleless, safety, blunt) Safety syringes (subcutaneous injections Safety lancets (capillary sampling) Safety pen needles (insulin injection) Safety scalpels (surgery) Safety arterial blood gas syringes (arterial sampling) Safety arterial catheters Straight/butterfly safety needle (venous sampling) Safety peripheral IV catheters (cannulation)

Partial replacement

Sharp Decrease of Reported Occupational Blood and Body Fluid Exposures in French Hospitals, 2003–2012: Results of the French National Network Survey, AES-RAISIN

N. Floret, MD, PhD;¹ O. Ali-Brandmeyer;¹ F. L'Hériteau, MD;² C. Bervas, MD;³ S. Barquins-Guichard;⁴ G. Pelissier, PhD;⁵ D. Abiteboul, MD;⁵ P. Parneix, MD;³ E. Bouvet, MD, PhD;^{2,5} C. Rabaud, MD, PhD;¹ and Working Group AES-RAISIN

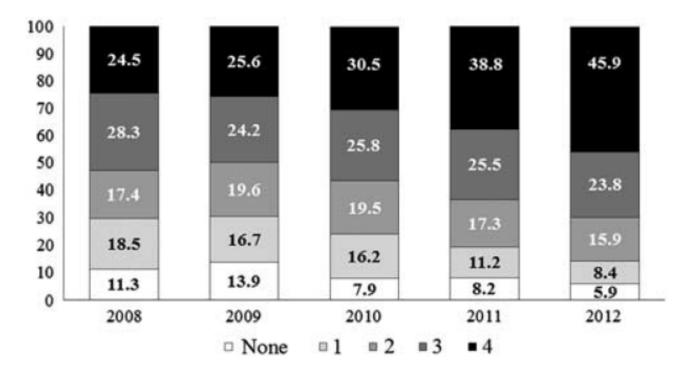


FIGURE 3. Trend in the proportion of healthcare facilities that have purchased more than 1 safety-engineered device among the 4 devices taken into account from 2008 to 2012 (intravascular catheters, blood gas syringes, needles for implanted ports, and unfractionated heparin syringes).

Infect. Control Hosp. Epidemiol. 2015;00(0):1-6

Safety device use in UK: Changes since 2013 sharps regulations

Table IV. Statistical comparison of 2013 and 2016 results

	2013	2016	RR	CL95	р
Activatable SED					
Total (%)	1210 (100)	1826 (100)			
Correctly activated (%)	814 (67)	1413 (77)	1.15	1.10 - 1.20	< 0.001
Partially or non-activated (%)	387 (32)	392 (22)	0.67	0.60 - 0.76	< 0.001
Tampered with (%)	9 (1)	21 (1)	1.55	0.71 - 3.36	NS
All HBN					
Total (%)	2545 (100)	2959 (100)			
Uncapped needles & syringe-needles (%)	643 (25)	166 (6)	0.22	0.19 - 0.26	< 0.001
Capped needles and syringe-needles (%)	127 (5)	42 (1)	0.82	0.60 - 1.12	NS
SED incl draw-up needles (%)	1775 (70)	2751 (93)	1.33	1.30 - 1.37	< 0.001
Sharps discarded "sharp" (%)	1039 (41)	579 (20)	0.48	0.44 - 0.52	<0.001
CED as fate an also and day to an UDN ballow barry		•			

SED safety engineered devices; HBN hollow bore needles

Reduction of needlestick injuries by 48 % in 1 year : Effects of improvement of the safety concept according to the European Union Council directive 2010/32/EU at a large regional hospital

- In 2016 the NSI safety concept at a large regional hospital (Leverkusen, Germany) was improved according to 2010/32/EU, specifically by an update of blood screening profiles and standard operating procedures (SOP), better dissemination of information to employees and complete conversion to safety cannulas and scalpels.
- The number of NSIs in 2017 was significantly reduced by 48.4% as compared to 2016 and NSIs with scalpels were completely prevented.
- The proportion of employees with NSIs who were **adequately immunized against hepatitis B** was significantly **increased to 84.1%** in 2017.
- Identification of the index patient was significantly increased to 82.5% in 2017.
- The cost of avoiding NSIs increased by a total of 24.1% in 2017 as compared to 2015 before introduction of the safety concept.

Busche MN, Klein JM, Kröger B, Siewe J, Faber H, Müßler J, Reuter S, Bastian L, Vogt PM. Unfallchirurg. 2019 Aug 19. doi: 10.1007/s00113-019-00710-8.

Reduction of necessary needles

 Reduce the number of blood drawings/blood tests

- Reduce peripheral IV catheter insertion
- inserting an IV catheter without a clear indication, or a daily reassessment of its indications, represents a risk of infection for the patient, and the possibility of a NSI for the HCW when replacing the device.
- Reduce quote or length of IV/i.m./s.c. therapies
- administering a drug IM or IV when an oral therapy is feasible, increases the risk of infection for the patient, and the chance of a NSI for the HCW.

Patients' safety

Replacement of necessary needles

Arch Gynecol Obstet (2009) 279:285–292 DOI 10.1007/s00404-008-0710-8

ORIGINAL ARTICLE

Integration of new safety technologies for needle aspiration of breast cysts

Randy R. Sibbitt · Dennis J. Palmer · Arthur D. Bankhurst · Wilmer L. Sibbitt Jr

Fig. 2 Reciprocating procedure device (RPD). The RPD safety device for breast cyst aspiration injects when the thumb presses the dominant plunger and aspirates when the accessory plunger is pushed. The index and middle fingers do not change position on the finger flanges when transitioning from injection to aspiration. This results in an extremely well controlled and powerful safety device for breast cyst aspiration

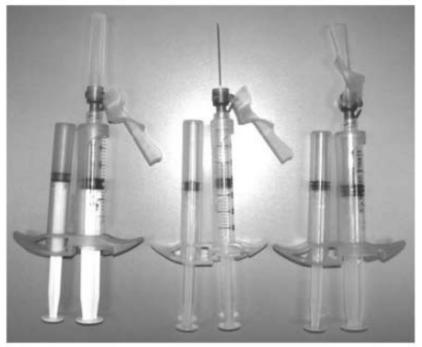
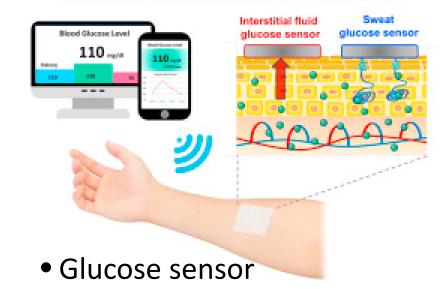
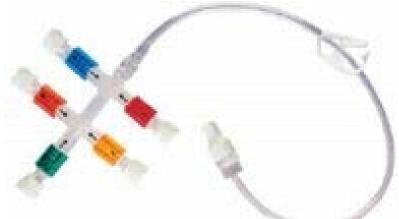
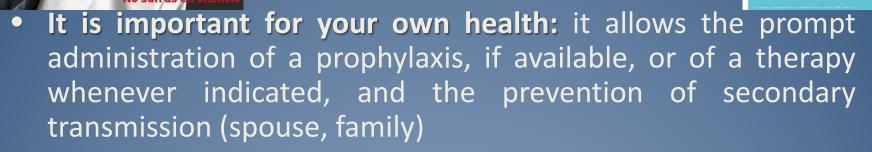


Fig. 1 Safety needle on the reciprocating procedure device (RPD). A BD safety needle with an off-axis rotating safety sheath was chosen as the safety device to reduce needlestick injuries and is shown here mounted on the RPD safety device. The BD needle comes with two sheaths (*left RPD*), a conventional sheath that is removed to expose and then use the needle (*middle RPD*), and then a lateral rotating sheath that is pushed with the finger and encloses and inactivates the used needle (*right RPD*)


Elimination of unnecessary needles



• *Buttonhole* technique to access fistula in dialysis patients (blunt needles)


Non-invasive Epidermal Glucose Sensors

 2-way or multiple access to avoid piggyback

Four good reasons

- It protects you: the epidemiological investigation allows to identify the source and the possible risks, and to demonstrate a causal relationship to receive workers' compensation in case an infection should develop;
- It allows to identify the causes and prevent other exposures: we need the data to support preventive interventions!
-It is mandatory by law

Underreporting

Response & follow up

* Eurosurveillance

ORIGINAL ARTICLES

Euroroundup

EUROPEAN RECOMMENDATIONS FOR THE MANAGEMENT OF HEALTHCARE WORKERS OCCUPATIONALLY EXPOSED TO HEPATITIS B VIRUS AND HEPATITIS C VIRUS

1 Ist V Puro¹, G De Carli¹, S Cicalini¹, F Soldani¹, U Balslev², J Begovac³, L Boaventura⁴, M Campins Marti⁵, MJ Hernández Navarrete⁶, Rom R Kammerlander⁷, C Larsen⁶, F Lot⁶, S Lunding⁹, U Marcus¹⁰, L Payne¹¹, AA Pereira⁴, T Thomas¹¹, G Ippolito¹

Euro

Exposure prevention is the primary strategy to reduce the risk of occupational bloodborne pathogen infections in healthcare workers (HCW). HCWs should be made aware of the medicolegal and clinical relevance of reporting an exposure, and have ready access to expert consultants to receive appropriate counselling, treatment and follow-up. Vaccination against hepatitis B virus (HBV), and demonstration of

en es frit pt

triple immunisation before employment are strongly recommended. HCWs with postvaccinal anti-HBs levels, 1-2 months after vaccine completion,

Introduction

Bloodborne pathogens such as hepatitis B (HBV) and C virus (HCV) represent an important hazard for healthcare workers (HCWs) [1]. In the general population, HCV prevalence varies geographically from about 0.5% in northern countries to 2% in Mediterranean countries, with some 5 million chronic carriers estimated in Europe; while HBV prevalence ranges from 0.3% to 3%. The World Health Organization (WHO) estimates that each year in Europe 304 000 HCWs are exposed to at least one percutaneous injury with a sharp

How Much do Needlestick Injuries Cost? A Systematic Review of the Economic Evaluations of Needlestick and Sharps Injuries Among Healthcare Personnel

Response & follow up

Alice Mannocci, PhD, MS;¹ Gabriella De Carli, MD;² Virginia Di Bari, PhD, MD;² Rosella Saulle, MD;¹ Brigid Unim, MD;¹ Nicola Nicolotti, MD;² Lorenzo Carbonari, PhD;³ Vincenzo Puro, MD;² Giuseppe La Torre, DSc¹

TABLE 4. Description of the Distribution of the Means of the Costs for Managing a Single Percutaneous Injury (2015 International US Dollars)

Approach	Type of Cost	No. of Studies	Means of the Costs for Managing a Single NSI					
			Median	Mean	SD	Min	Max	
Data driven	Direct	5	173	521	610	48	1,516	
(N = 8) Indirect Direct + ir	Indirect	3	175	232	119	152	369	
	Direct + indirect	6	656	831	630	199	1,691	
Modeling	Direct	4	586	595	285	294	913	
(N=6) Indirec	Indirect	3	322	346	59	303	413	
	Direct + indirect	5	747	897	284	649	1,324	
All $(N = 14)$	Direct	9	425	554	467	48	1,516	
	Indirect	6	322	286	117	152	413	
	Direct + indirect	11	747	861	482	199	1,691	

NOTE. NSI, needlestick and sharps injury.

Direct + indirect costs = Int\$ 747 (range 199-1691)

Direct costs (9 studies) = Int\$ 425 (48-1516); indirect costs (6 studies), Int\$322 (152-413). Modeling studies had higher disaggregated and aggregated costs, but data-driven studies showed a greater variability *Infect Control Hosp Epidemiol* 2016;37:635–646

Intangible costs of occupational injuries

- Costs of intangible aspects of HCW injuries, such as anxiety and distress, could equal costs associated with the medical evaluation of these injuries
- The **impact of being at risk of developing a bloodborne infection** has effects on:
- personal and family life
- sexual relationships
- reproductive plans
- breastfeeding
- professional expectations

PREMIO SHAM - FEDERSANITÀ ANCI PREVENZIONE DEI RISCHI 2017

The Brick Wall of Safety Needle and Sharps Injuries Patients' safety Prevention S rotective Monitoring nent COI Elimin Audit & control **laccination** unnecessa Raising Awareness **Recording &** rk Organization reporting o CAUTION in progress